Estimation error due to duplicated observations: a Monte Carlo simulation.

Francesco Sarracino & Małgorzata Mikucka

Statistical Office of Luxembourg, University of Leuvain-la-Neuve, $\ensuremath{\mathfrak{C}}$ Higher School of Economics

Wednesday 20th April, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

A question for you

Statistical consequences of non-unique observations

Literature review

Statistical consequences of non-unique observations

Literature review

What does it mean?

Definition

Duplicate records are:

records that are not unique, i.e. records in which the set of all (or nearly all) answers from a given respondent is identical to that on another respondent.

They originate from:

- error or forgery by interviewers;
- data coders;
- data processing staff.

(American Statistical Association, 2003; Kuriakose & Robbins, 2015; Waller, 2013)

How frequent are duplicated data?

We assume that the data we use are reliable, but ...

"non-unique records occur at non-negligible rates" (Kuriakose & Robbins, 2015).

- Slomczynski et al. 2015: considerable amount of duplicates in 17/22 international surveys;
- Kuriakose & Robbins, 2015: 20% of 1000 public datasets contain duplicated observations.

It seems an important topic

Slomczynski et al., 2015

1721 national surveys from 22 comparative survey projects, 142 countries, 2.3 millions respondents:

- Surveys with duplicates are frequent: ISSP (35.8%); LatinoBarometro (68.4%); WVS (19.6%); ESS (3.4%).
- Duplicates are not many: on average no more than 1% duplicate records (sometimes > 10%).
- Duplicates come with various patterns:
 - Ecuador (2000) in Latinobarometro: 60% of duplicate records (doublets (272), triplets (63));
 - Norway (2009) in ISSP: 11% of duplicate records (doublets (27), triplets (12), quadruplets (6), quintuplets (5), and more.)

It seems an important topic

Kuriakose & Robbins, 2015

1008 national surveys, more than 1.2 million observations, 35 years, 154 countries, territories or subregions:

- 20% of the surveys has duplicated data;
- ▶ 30% of 309 of Pew's international studies has duplicated data;
- ▶ in Western countries 5% of the surveys have duplicated data;
- ▶ in the developing world, it's 26%.
- only rarely non-unique cases are identical on all variables (*near duplicates*).

How the debate is going:

"The problem isn't going to just go away"

The question remains: "how duplicate records affect results of regression analysis, and to deal with them?"

"The problem isn't going to just go away"

The question remains: "how duplicate records affect results of regression analysis, and to deal with them?"

Our contribution

We assess the risk of obtaining biased estimates due to duplicated observations:

Duplicate cases:

- increase the sample used in statistical inference;
- reduce the variance;
- artificially increase statistical power of estimations;
- narrower estimated confidence intervals

Risk of getting wrong conclusions!

Our contribution

We assess the risk of obtaining biased estimates due to duplicated observations:

Duplicate cases:

- increase the sample used in statistical inference;
- reduce the variance;
- artificially increase statistical power of estimations;
- narrower estimated confidence intervals

Risk of getting wrong conclusions!

Our contribution

We assess the reliability of possible solutions:

- naive estimation;
- dropping the duplicate observations;
- flagging the duplicate observations;
- robust regression;
- weighting for the inverse of the multiplicities.

(ロ) (部) (E) (E) (E) (000)

12/31

How we do it

<ロ><日><日><日><日><日><日><日><日><日><日<<10,000</13/31</td>

How we do it

Monte Carlo simulation:

1) we generate the initial dataset:

- ▶ N = 1500
- ► Variables: *x*, *y*, *z*, and *t*; *y* is treated as dependent variable;
- Matrix of correlations used to generate the original dataset.

variables	х	у	Z	t
х	1			
у	0.50	1		
Z	0.40	0.94	1	
t	-0.43	-0.81	-0.80	1

• *true* coefficients: $y_i = \alpha + \beta_1 \cdot x_i + \beta_2 \cdot t_i + \beta_3 \cdot z_i + \varepsilon_i$

2) we duplicate randomly selected cases:

 Monte Carlo simulation to generate duplicate records and to replace original ones;

Scenario 1

Scenario 2

a single observati	observation is duplicated from 1 to		data contain multiple pairs of identical			
	5 times:			records $(1 - 7)$) dou	iblets):
Variant 1	Variant	: 2	Va	ariant 3		Variant 4
duplicate records a	re duplicate rec	ords are	duplicat	e records are	dup	licate records are
chosen randomly	from the sec	ond and	from	the lower	f	rom the upper
	third qua	irtile	q	uartile		quartile
Solution 1	Solution 2	Solut	ion 3	Solution 4		Solution 5
'naive'	excluding all	flaggir	ng the	robust regress	ion	weighting by the
estimation	duplicate records	duplicate	e records	VS OLS		inverse of the
						multiplicity

- We investigate 40 patterns $(2 \cdot 4 \cdot 5 = 40)$ of duplicate records.
- For each pattern we run 1000 repetitions in which duplicated and replaced records are chosen randomly according to the variants.

3) 'naive' estimation and possible solutions:

- 'naive' estimation: takes data as they are;
- excluding duplicate records;
- flagging duplicate records and control for them;
- robust regression: duplicate records constitute influential observations and we can account for this;
- ▶ weighting by the inverse of multiplicities (Lessler & Kalsbeek, 1992).

4) assessment of bias:

- we subtract the 'true' coefficients from those estimated for data with duplicates;
- we use Dfbetas to assess the severity of the bias;

What are *Dfbetas*?

Normalized measures of how much specific observations affect the estimates of regression coefficients.

$$Dfbeta = \frac{\beta_{new} - \beta_{true}}{se_{new}}$$

High bias if Dfbetas > $\frac{2}{\sqrt{N}} = 0.05$.

N. of duplicates	variable	mean	sd	min	max	obs	missing
		3016	749.7	344.9	5775	1500	0
		6176	2899	-3213	17299	1500	0
Initial dataset		187.8	21.71	103.2	261.4	1500	0
		21.25	5.633	1.967	41.45	1500	0
	duplicates (flag)	0	0	0	0	1500	0
		3015	750.0	344.9	5775	1500	0
		6176	2899	-3213	17299	1500	0
1 doublet		187.8	21.71	103.2	261.4	1500	0
		21.25	5.633	1.967	41.45	1500	0
	duplicates (flag)	0.000	667 0.0258	0	1	1500	0
		3017	748.9	344.9	5775	1500	0
		6177	2898	-3213	17299	1500	0
1 triplet		187.8	21.68	103.2	261.4	1500	0
		21.24	5.627	1.967	41.45	1500	0
	duplicates (flag)	0.001	33 0.0365	0	1	1500	0
		3018	753.5	344.9	5775	1500	0
		6183	2902	-3213	17299	1500	0
1 quadruplet		187.9	21.80	103.2	261.4	1500	0
		21.23	5.657	1.967	41.45	1500	0
	duplicates (flag)	0.002	00 0.0447	0	1	1500	0
1 quintuplet		3017	748.3	344.9	5775	1500	0
		6180	2895	-3213	17299	1500	0
		187.8	21.66	103.2	261.4	1500	0
		21.24	5.630	1.967	41.45	1500	0
	duplicates (flag)	0.002	67 0.0516	0	1	1500	0
1 sextuplet		3014	747.6	344.9	5775	1500	0
		6175	2893	-3213	17299	1500	0
		187.7	21.67	103.2	261.4	1500	0
		21.27	5.624	1.967	41.45	1500	0
	duplicates (flag)	0.003	33 0.0577	0	1	1500	0

An example of the dataset produced in a repetition

4) Q (↓ 18 / 31

Are you still with me?

20/31

What we have found

<ロ><一><一><一><一><一><一><一</td>21/31

Errors when 1 observation is duplicated 1 to 5 times.

Probability of obtaining unbiased coefficients.

Probability of unbiased coefficients when 1 to 79 obs. are duplicated 1 time.

First conclusions

- Weighting for the inverse of the multiplicities decreases the risk of obtained erroneous estimates if 1 doublet is present;
- Dropping, flagging and weighting work well when data have a single triplet, quadruplet, quintuplet or sextuplet;
- Dropping and flagging perform poorly if multiple doublets are included in the data;
- Robust regression performs poorly in all cases.

Typical and deviant cases

Are the risks of obtaining wrong estimates lower if the duplicate records are 'typical'?

Typical and deviant cases: 1 obs. duplicated many times

	Duplicated observation drawn randomly from:				
	overall	upper			
	distribution	distribution	quartile	quartile	
	1 dou	blet:			
'Naive' estimation	86.67	88.22	87.17	85.40	
Drop duplicates	87	86.13	87.10	86.53	
Flag and control	86.97	86.13	87.10	86.53	
Robust regression	28.10	27.80	26.77	26.40	
Weighted regression	94.10	93.63	94.03	94.05	
	1 quadr	ruplet:			
'Naive' estimation	54.48	53.38	55.30	55.17	
Drop duplicates	72.33	71.30	74.20	75.22	
Flag and control	72.28	71.22	74.20	75.15	
Robust regression	26.57	25.55	29.65	25.73	
Weighted regression	71.92	70.90	73.90	74.72	
	1 sextı	ıplet:			
'Naive' estimation	41.63	39.60	39.23	39.40	
Drop duplicates	64.45	64.72	63.13	61.90	
Flag and control	64.30	64.60	62.95	61.85	
Robust regression	24.18	22.50	24.70	23.75	
Weighted regression	63.90	64.30	62.63	61.58	

27 / 31

Second conclusion

- 'typical' or 'deviant' cases make little difference for the risk of getting wrong estimates;
- the risk of error when the duplicate is drawn from the overall distribution is not lower than when the duplicate is drawn from the tie.
- these results do not depend on the solution adopted to deal with duplicates.
- These results generally hold also when many observations are duplicated once.
- These conclusions do not change if the duplicate records are drawn on the basis of the distribution of the x variable.

Concluding remarks

Be aware that duplicate records affect your estimates!!!

- The risk of obtaining wrong estimates increases with the number of duplicate records:
 - ▶ a single sextuplet (< 1%) the probability of unbiased estimates is 41.6%;
 - \blacktriangleright 79 doublets of identical records (\sim 10%) the probability of unbiased estimates is 11.4%.
- Even a small number of duplicate records creates considerable risk of wrong estimates.
- The risk of wrong estimates does not change for 'typical' and 'deviant' cases;
- Weighting the duplicates by the inverse of their multiplicity is the best solution (among the considered ones) to minimize the risk of wrong estimates.

Policy recommendation

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
30 / 31

Policy recommendation

It is possible to adopt solutions to minimize the errors;

Correcting the data with statistical tools is not a trivial task.

Thanks a lot for your attention!

Francesco.Sarracino@statec.etat.lu f.sarracino@gmail.com

This report was presented at the 6th LCSR International Workshop "Trust, Social Capital and Values in a Comparative Perspective", which held within the XVII April International Academic Conference on Economic and Social Development.

April 18 – April 22, 2016 - Higher School of Economics, Moscow.

https://lcsr.hse.ru/en/seminar2016

Настоящий доклад был представлен на VI международном рабочем семинаре ЛССИ «Доверие, социальный капитал и ценности в сравнительной перспективе», прошедшего в рамках XVII Апрельской международной научной конференции НИУ ВШЭ «Модернизация экономики и общества».

18 – 22 апреля, 2016 – НИУ ВШЭ, Москва.

https://lcsr.hse.ru/seminar2016