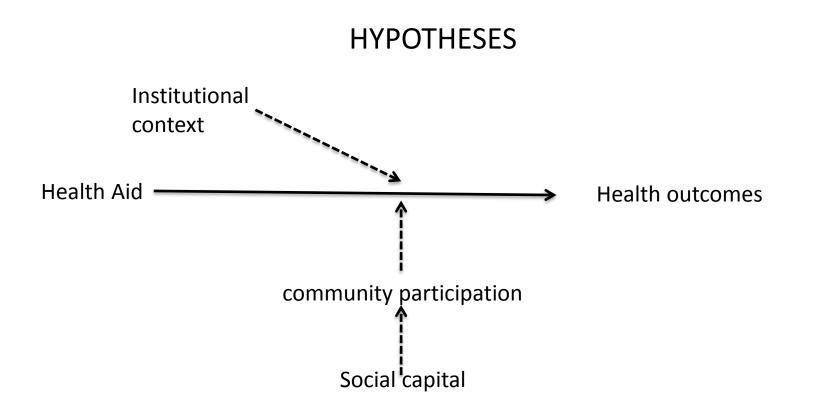
SOCIAL CAPITAL AND THE EFFECTIVENESS OF FOREIGN AID TO THE HEALTH SECTOR

Stefan Kruse (M.A.)

Centre for the Study of Democracy (CSD), Leuphana University Lüneburg, Germany Hamburg Institute of International Economics (HWWI)


> 5th LCSR International Annual Research Conference "Cultural and Economic Changes under Cross-national Perspective" 16.11. - 20.11.2015 Moscow

Theory

- Theoretically, linking beneficiary participation and aid effectiveness follows principalagent-theory claiming that an active citizenry can make public institutions more responsive to citizen's needs and therefore more accountable for their actions. In practice, participation concerns the design or planning, construction, operation and management as well as monitoring & evaluation of development projects.
- What determines collective action?
 - Apart from specific characteristics of the project and the implementing agency the success of collective action depends on:
 - ability of a community to act collectively to make decision common to the group, including operational rules of groups regarding use, including entry and exit rules
 - external decision-making arrangements, including bureaucratic and legislative rules
 - Social capital theory suggests that "(...) features of social organization, such as trust, norms, and networks [that] can improve the efficiency of society by facilitating coordinated actions" (Putnam et al. 1993)
 - That is, high levels of social capital are likely to facilitate cooperation by lowering the cost of collective action.

LITERATURE ON SOCIAL ACCOUNTABILITY

- Gaventa/Barrett (2012) provide evidence that local associations is the most successful type of citizen participation in development projects because membership effectively contributed to responsive and accountable states in the majority of case studies. The second most effective type of citizen engagement increasing government responsiveness are social movements (Isham et al. 1995).
- However, these effects are moderated by the level of democratic institutions (Burnside/Dollar 2004) and the level of decentralization.
- Rocha Menorcal/Sharma (2008) & Mansuri/Rao (2013) provide further (case study) evidence on the role of decentralization. They argue that increasing financial resources to local governments and strengthening the capacities of local officials enhances the ability of local governments to respond to citizens' needs, because citizens can communicate their preferences and needs to elected officials and monitor their performance more closely. That is, decentralisation "brings governments closer to the people" and makes it more accountable.

- Health aid is more effective in countries with high levels of social capital.
- Health aid is more effective in countries with high levels of social capital and high levels of "good governance".
- Health aid is more effective in countries with high levels of social capital and high levels of decentralization.
- Health aid is more effective in countries with high levels of social capital and more inclusive political institutions.

DATA AND METHODS

HEALTH AID BY PURPOSE

Health Aid by purpose

8.0e+09

Health, general

Medical research

Medical services

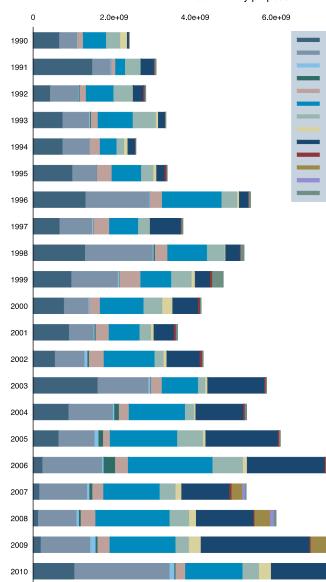
Basic health care

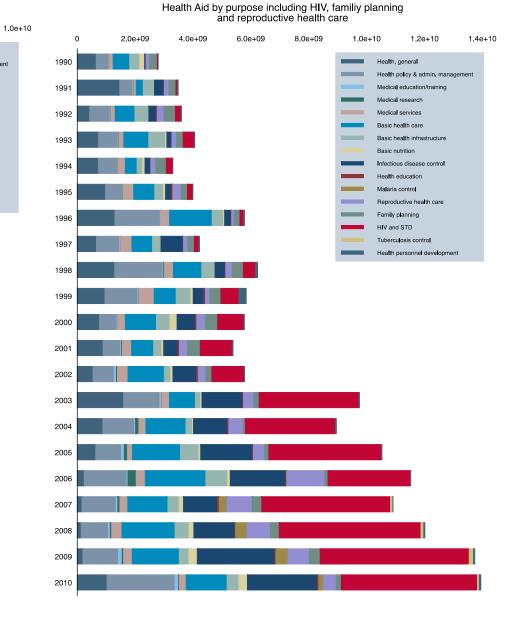
Basic nutrition

Health education

Tuberculosis control

Health personnel development


Malaria control


Health policy & admin. management

Medical education/training

Basic health infrastructure

Infectious disease control

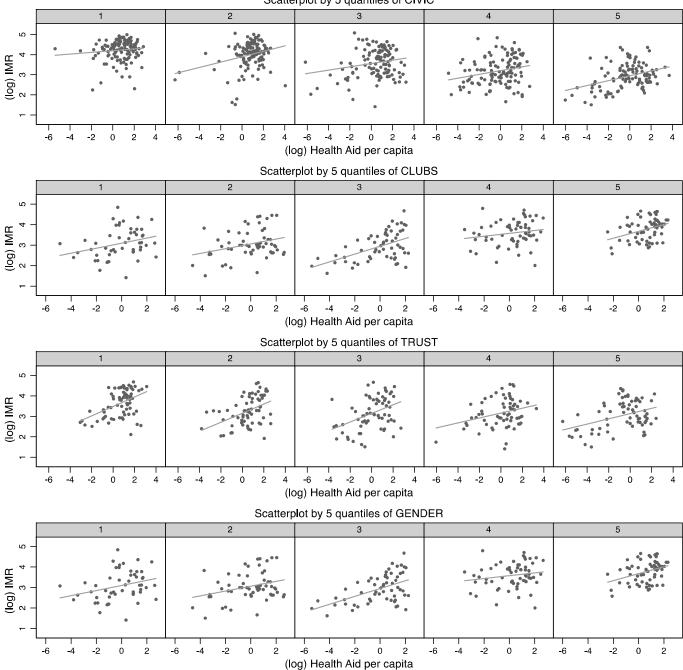
AVERAGE ANNUAL RATE OF DECLINE IN INFANT MORTALITY (AARD) 1990 - 2011 IN %

HOW TO MEASURE SOCIAL CAPITAL

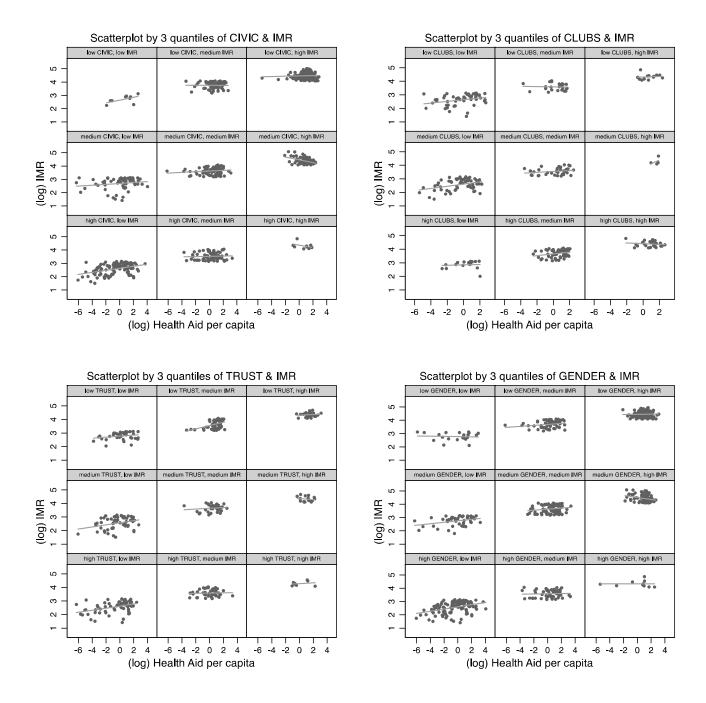
Social capital is defined as a society's level of trust and networks as well as the degree of inclusiveness and elite-challenging action.

Indices of Social Development (2013) \rightarrow latent variable approach (Dulal etal. 2011)

- **civic activism** (30): covers the importance of an informed and aware citizenry through access to media, citizens' capacity to express and exercise their views to influence government priorities or governance processes through actions, such as protests and petitions as well as the density of international organizations
- **clubs and associations** (41): reflects a community's bonding ties, which can provide protection against material hardship and reduce risk and uncertainty, by relying on intracommunity ties, such as the assistance of family, friends or neighbours
- **interpersonal trust** (39) trust and safety, which combines generalized trust with the trustworthiness of others (safety). Trust refers to the underlying norm of reciprocity that facilitates exchanges between community members, and enables communities to resolve collective action problems (Foa/Tanner2011)
- gender equality (22): measures gender related differences in education and occupational employment as well as womens social and economic rights and gender norms

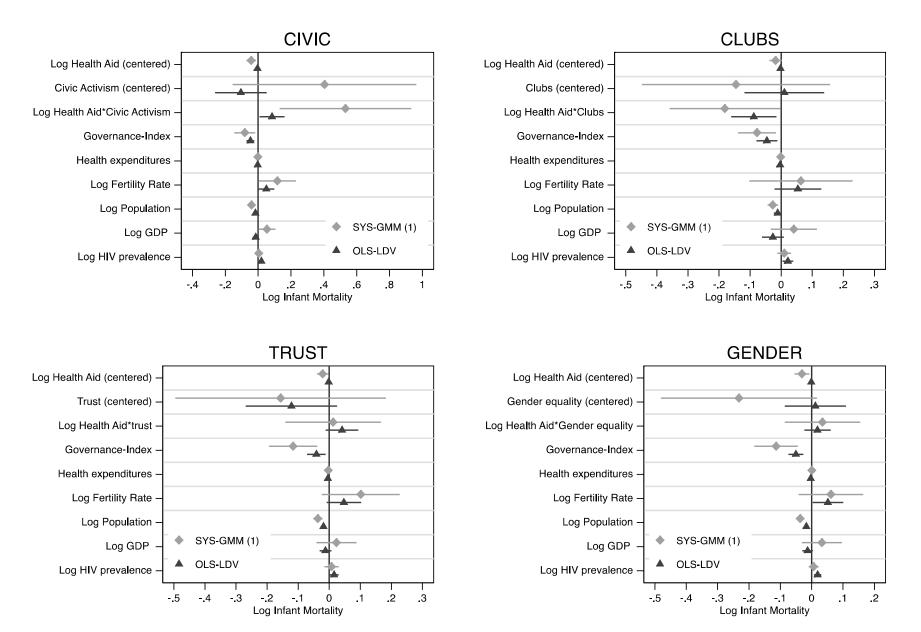

MODEL & ESTIMATION METHODS

(1)

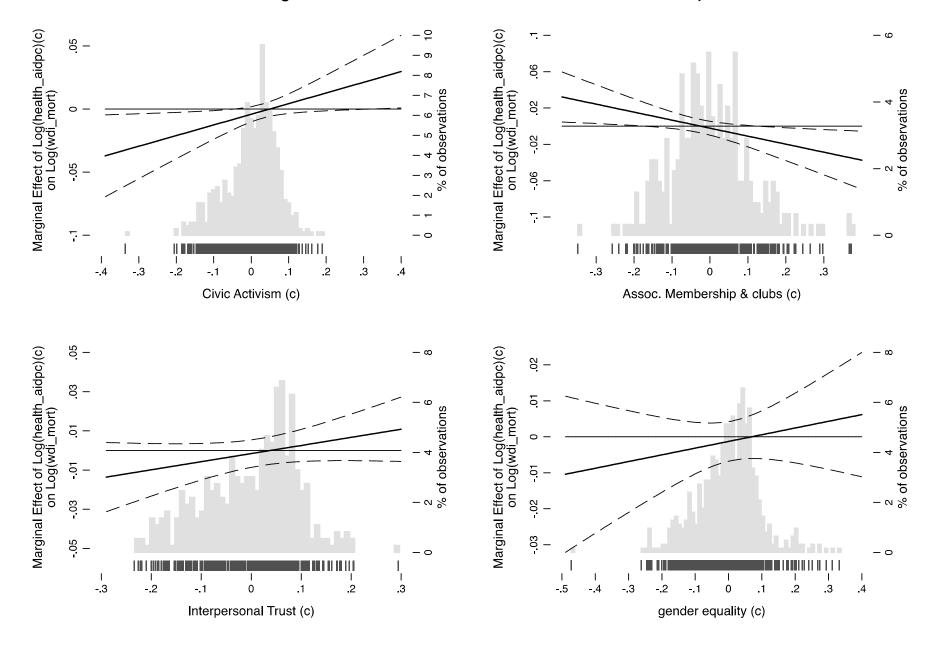

 $y_{it} = \alpha_t + \mu_i + \beta_1 AID_{it} + \beta_2 SC_{it} + \beta_3 AID_{it} * SC_{it} + \beta_4 X'_{it} + \varepsilon_{it}$

- OLS-LDV (Beck/Katz 1995)
- Difference-GMM & System-GMM (Arellano/Bond 1991)
- alternative estimation methods
 - static panel data models
 - Fixed Effects FE
 - Random Effects (RE)
 - Random coefficient models (RCM)
 - dynamic panel data models
 - FE-LDV
 - RE-LDV

FINDINGS


Scatterplot by 5 quantiles of CIVIC

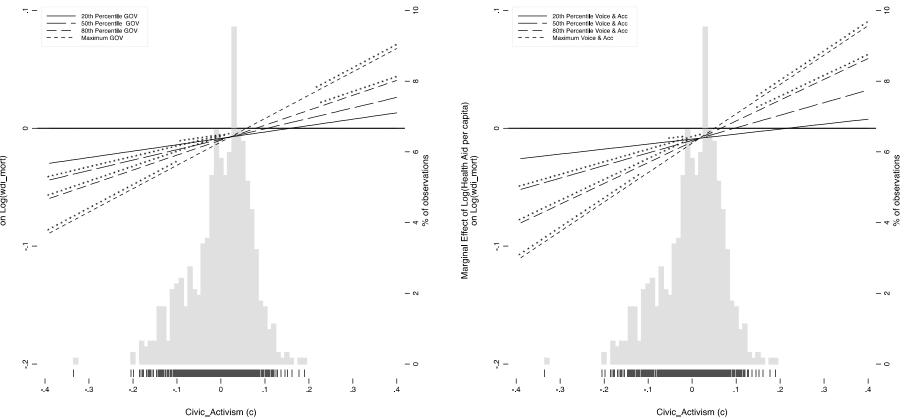
SOCIAL CAPITAL	PREDICTORS	FE	RE	LDV-PCSE	SYS-GMM 1-step	SYS-GMM 2-step	
		0.00486	0.0109	-0.00410	-0.0426***	-0.0421***	
CIVIC	log DAH	(0.00943)	(0.00720)	(0.00310)	(0.0150)	(0.0142)	
ACTIVISM	CIVIC	0.406	0.473**	-0.105	0.404	0.413*	
(N=107	CIVIC	(0.250)	(0.189)	(0.0803)	(0.285)	(0.242)	
n=392)	log DAHCIVIC	-0.159	-0.0858	0.0845**	0.531***	0.520**	
		(0.106)	(0.102)	(0.0389)	(0.204)	(0.213)	
	log DAH	-0.000631	-0.00163	-0.00216	-0.0180*	-0.0154**	
CLUBS		(0.00914)	(0.00882)	(0.00388)	(0.0101)	.) (0.00696)	
	CLUBS	-0.205	-0.0705	0.0102	-0.146	-0.0882	
(N=68	CLOBS	(0.177)	(0.172)	(0.0654)	(0.154)	(0.156)	
n=221)	log DAHCLUBS	0.0209	-0.0403	-0.0881**	-0.181**	-0.132	
	IOG DAI ICEODO	(0.0681)	(0.0870)	(0.0373)	(0.0907)	(0.116)	
	log DAH	-0.0104	-0.00710	-0.00161	-0.0209**	-0.0148**	
TRUST		(0.00980)	(0.00710)	(0.00358)	(0.00959)	(0.00673)	
(N=92	TRUST	-0.311	-0.417**	-0.122	-0.156	-0.0432	
n=266)	11(051	(0.217)	(0.193)	(0.0751)	(0.173)	(0.124)	
	log DAHTRUST	0.0351	0.0180	0.0414	0.0126	0.0154	
		(0.0663)	(0.0701)	(0.0269)	(0.0787)	(0.0639)	
	log DAH	0.00758	0.0168**	-0.00129	-0.0310***	-0.0269**	
GENDER		(0.00796)	(0.00670)	(0.00281)	(0.0120)	(0.0124)	
EQUALITY	GENDER	-0.141	-0.411***	0.0120	-0.232*	-0.113	
(N=107		(0.123)	(0.132)	(0.0498)	(0.127)	(0.131)	
n=402)	log DAHGENDER	-0.145**	-0.128**	0.0186	0.0347	0.0428	
	ING DAHALINDER	(0.0565)	(0.0502)	(0.0214)	(0.0614)	(0.0577)	


Table 1: Summary of the main and interaction effects of social capital on the relationship between DAH and IMR

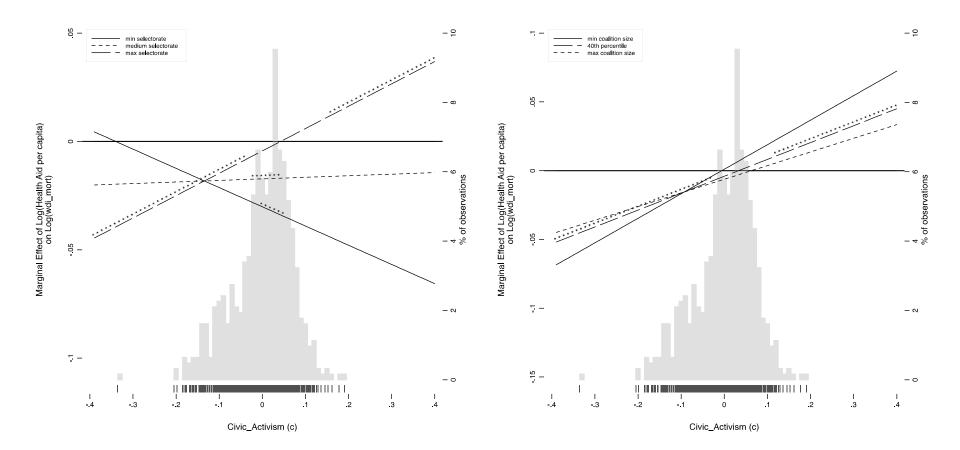
System-GMM and OLS-LDV (PCSE)

Note: SYS-GMM(1) & OLS-LDV. Lagged dependent variable (LDV) not shown.

The marginal effect of DAH on IMR for values of social capital

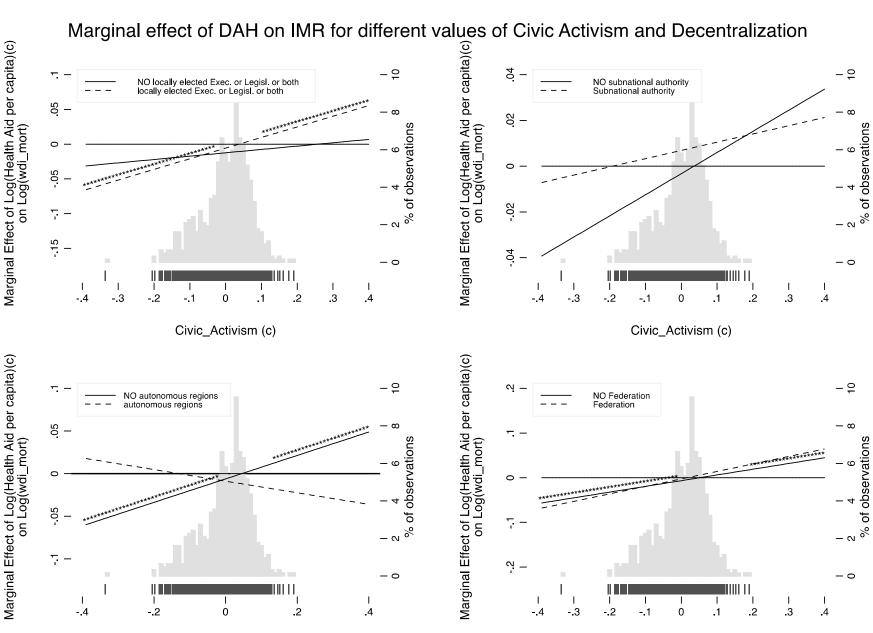


Does institutional context influence the relationships between DAH, Social capital and IMR?


	Governance Index	Voice & Accountability	Selectorate Size	Coalition size
DAH	-0.00930***	-0.0103***	-0.00580*	-0.00386
	nance _{0.2333} 0*the r	margina.00375)	DA 0.00315)	MR ^(0.00331) -0.0436*
CIVIC	for different v	alues of civic act	ivisn 0 ⁰²³⁴⁾	(0.0241) -0.123
	(0.0920)	(0.0984)	(0.0820)	(0.0825)
DAHGOVERNANCE	-0.00140	-0.00143	0.0258*	-0.00790
	(0.00509)	(0.00499)	(0.0147)	(0.0128)
DAHCIVIC	0.0910*	0.107**	0.0925**	0.125***
	(0.0476)	(0.0458)	(0.0395)	(0.0432)
GOVERNANCECIVIC	-0.00916	0.0561	0.433	0.249
	(0.114)	(0.109)	(0.613)	(0.392)
DAHGOVERNANCECIVIC	0.0670	0.0847	0.192	-0.0856
	(0.0513)	(0.0587)	(0.342)	(0.133)
EXPEND	-0.00240	-0.00302*	-0.0131***	-0.0123**
	(0.00150)	(0.00164)	(0.00497)	(0.00521)
lagged IMR	0.958***	0.957***	0.963***	0.963***
	(0.0188)	(0.0199)	(0.0208)	(0.0202)
log FERTIL	0.0680***	0.0730***	0.0397	0.0346
	(0.0240)	(0.0259)	(0.0259)	(0.0258)
log POP	-0.0172***	-0.0136***	-0.0148***	-0.0144***
	(0.00394)	(0.00410)	(0.00429)	(0.00422)
log GDP	-0.00810	-0.0173	-0.0204*	-0.0203*
	(0.00951)	(0.0106)	(0.0110)	(0.0109)
log HIV	0.0156***	0.0147**	0.0176***	0.0187***
	(0.00555)	(0.00601)	(0.00669)	(0.00656)
Constant	0.307**	0.326**	0.406***	0.404***
	(0.142)	(0.147)	(0.157)	(0.154)
Observations	392	392	391	392
R-squared	0.994	0.994	0.995	0.995
Number of ccode	107	107	107	107

Note: Panel corrected standard errors in parentheses with AR1 process within panels *** p<0.01, ** p<0.05, * p<0.1

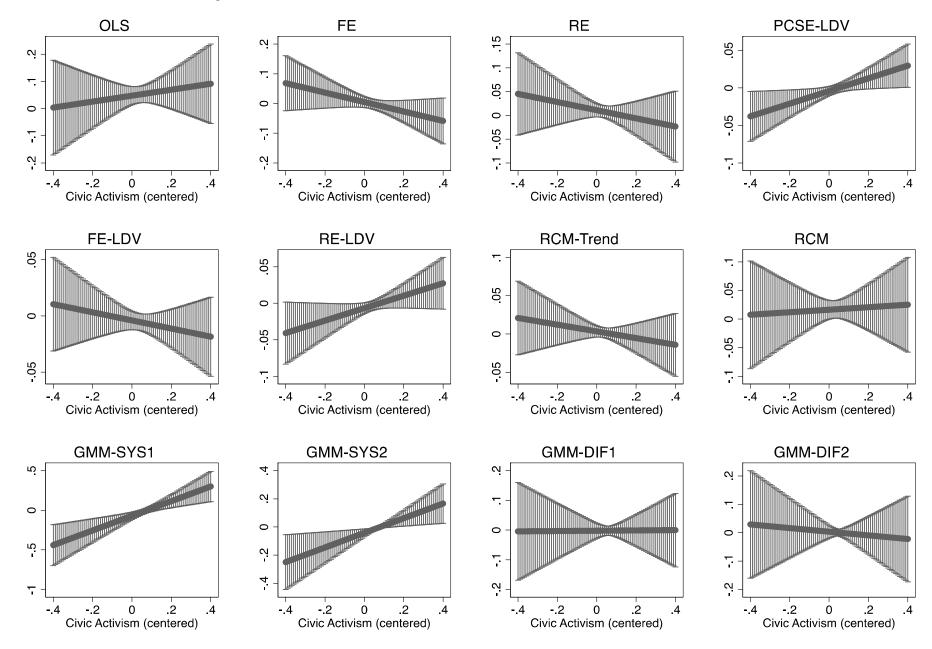
Governance and the marginal effect of DAH on IMR


Formal political institutions and the marginal effect of DAH on IMR

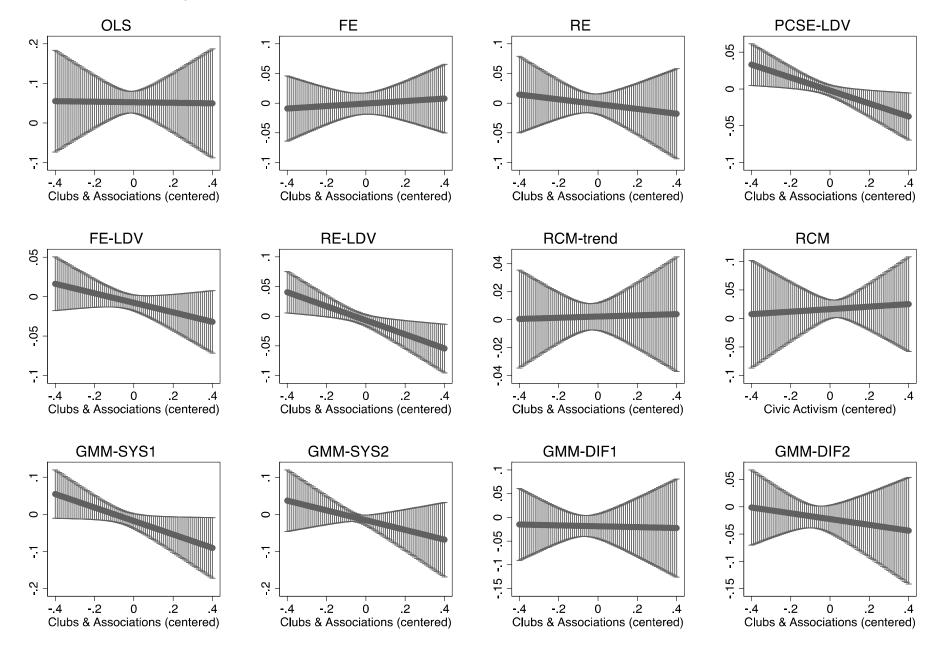
	Locally elected Executive	Subnational authority	Autonomous Regions	Federation
lagged DECENTRALIZATION	0.0169	0.00172	0.0355***	0.0138
	(0.0120)	(0.0278)	(0.0127)	(0.0182)
lagged AID	-0.0125*	-0.00326	-0.00618	-0.00662*
	(0.00756)	(0.00891)	(0.00376)	(0.00366)
DECENTRALIZATIONAID	0.00673	0.0102	-0.00265	0.00390
	(0.00830)	(0.0133)	(0.00866)	(0.00936)
CIVIC	-0.128	-0.157	-0.144	-0.0693
	(0.122)	(0.186)	(0.101)	(0.0922)
DECENTRALIZATIONCIVIC	0.263*	0.229	0.335	-0.309
	(0.144)	(0.290)	(0.206)	(0.282)
AIDCIVIC	0.0482	0.0923	0.138***	0.128***
	(0.0660)	(0.111)	(0.0480)	(0.0479)
DECENTRALIZATIONAIDCIVIC	0.105	-0.0564	-0.206	0.0395
	(0.0754)	(0.148)	(0.189)	(0.137)
lagged IMR	0.974***	0.965***	0.983***	0.977***
	(0.0211)	(0.0309)	(0.0192)	(0.0207)
lagged GOV	-0.0350**	-0.0353*	-0.0215*	-0.0254*
	(0.0149)	(0.0210)	(0.0130)	(0.0131)
lagged EXPEND	-0.000843	0.000480	-0.000950	-0.00137
	(0.00180)	(0.00209)	(0.00163)	(0.00169)
lagged FERTIL	0.0871***	0.108**	0.0980***	0.0933***
	(0.0253)	(0.0475)	(0.0223)	(0.0239)
lagged POP	-0.0162***	-0.0117*	-0.0135***	-0.0128***
	(0.00463)	(0.00625)	(0.00434)	(0.00478)
lagged GDP	0.00242	0.00739	0.0199*	0.0160
	(0.0125)	(0.0125)	(0.0106)	(0.0113)
lagged HIV	0.0122*	0.00682	0.00911	0.0110*
	(0.00687)	(0.0146)	(0.00584)	(0.00633)
Constant	0.0671	-0.0491	-0.154	-0.0983
	(0.170)	(0.218)	(0.157)	(0.173)
Observations	240	124	301	300

 Observations
 240
 124

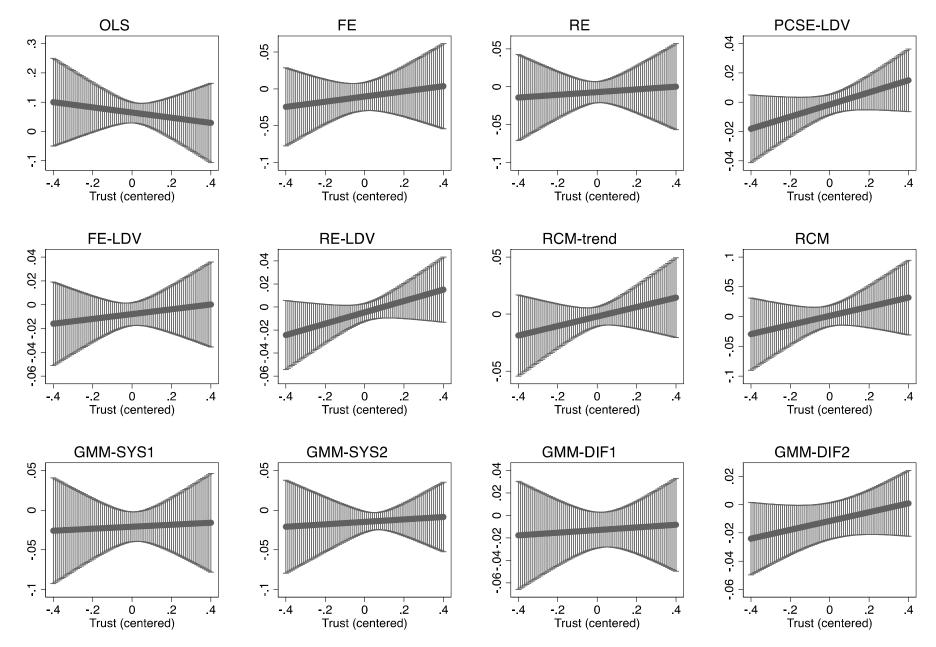
 Note: Panel corrected standard errors in parentheses with AR1 process within panels *** p<0.01, ** p<0.05, * p<0.1</td>

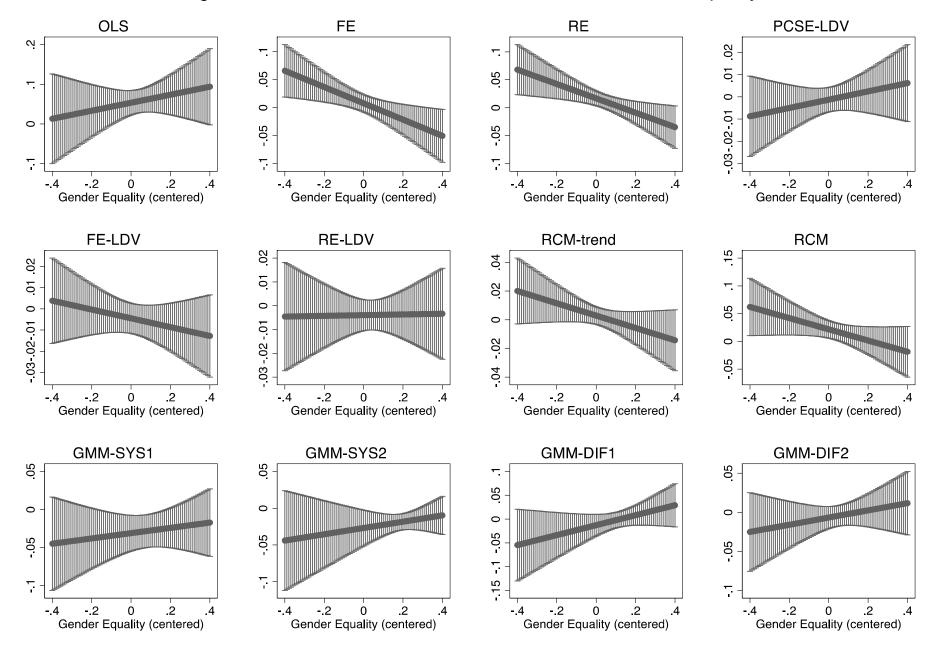


Civic_Activism (c)


ROBUSTNESS CHECKS

- case selection
 - drop outlier according to HADI-Method, DFBETA and COOKS'D
- accounting for other covariates
 - number of physicians
 - years of female education
 - regional dummies
 - (inter-/intra country) conflict
 - water aid
 - all other development assistance (REST= TOTAL DAH WATER)
- testing different data sources:
 - DAH broadly defined (adding *Family Planning, Reproductive Health Care, HIV*)
 - cumulative DAH over 5-year periods
 - Institute of Health Metrics (IHME): health aid *disbursements*
- "convergence" model
- \rightarrow qualitatively similar results


Marginal effect of DAH on IMR for different values of civic activism


Marginal effect of DAH on IMR for different values of Clubs & Associations

Marginal effect of DAH on IMR for different values of Trust

Marginal effect of DAH on IMR for different values of Gender Equality

CONCLUSION

- Clubs and associations enhances the effect of DAH on IMR.
- Civic engagement compensates the effect of DAH on IMR.
- Gender equality seems to

THANK YOU FOR YOUR ATTENTION!

APPENDIX

	(1)	(2)	(3)	(8)	(9)	(10)	(14)	(19)	(27)	(28)	(29)	(30)
									SYS-GMM	SYS-GMM	DIF-GMM	DIF-GMM
	OLS	FE	RE	LDV-PCSE	FE-LDV	RE-LDV	RCM trend	RCM2	1-step	2-step	1-step	2-step
log DAH	0.0476***	0.00486	0.0109	-0.00410	-0.00403	-0.00674*	0.00333	0.0163*	-0.0426***	-0.0421***	-0.00230	0.00350
	(0.0170)	(0.00943)	(0.00720)	(0.00310)	(0.00419)	(0.00374)	(0.00378)	(0.00837)	(0.0150)	(0.0142)	(0.0130)	(0.0116)
CIVIC	-1.631***	0.406	0.473**	-0.105	-0.0209	-0.127	-0.0849	0.379*	0.404	0.413*	0.285	0.0867
civic	(0.380)	(0.250)	(0.189)	(0.0803)	(0.114)	(0.0926)	(0.121)	(0.225)	(0.285)	(0.242)	(0.296)	(0.203)
log DAH#CIVIC	0.110	-0.159	-0.0858	0.0845**	-0.0362	0.0853*	-0.0438	0.0220	0.531***	0.520**	0.00532	-0.0640
	(0.200)	(0.106)	(0.102)	(0.0389)	(0.0481)	(0.0490)	(0.0562)	(0.111)	(0.204)	(0.213)	(0.183)	(0.216)
GOV	-0.145***	-0.0778	-0.0924***	-0.0469***	-0.0627**	-0.0479***	-0.0368*	-0.103***	-0.0814**	-0.0899***	-0.0258	-0.0120
001	(0.0348)	(0.0475)	(0.0281)	(0.0124)	(0.0251)	(0.0110)	(0.0199)	(0.0260)	(0.0324)	(0.0342)	(0.0577)	(0.0691)
EXPEND	-0.0220***	-0.00760	-0.00977***	-0.00264*	-0.00530**	-0.00332**	-0.000970	-0.00757***	-0.00162	0.00102	-0.00723	-0.00202
	(0.00392)	(0.00481)	(0.00315)	(0.00146)	(0.00254)	(0.00133)	(0.00201)	(0.00291)	(0.00376)	(0.00403)	(0.00482)	(0.00396)
log FERTIL	0.726***	0.298**	0.586***	0.0499**	0.0223	0.0486**	0.434***	0.598***	0.117**	0.130**	-0.0169	-0.0264
	(0.0531)	(0.120)	(0.0612)	(0.0249)	(0.0679)	(0.0232)	(0.0534)	(0.0610)	(0.0577)	(0.0573)	(0.134)	(0.123)
log POP	0.00614	0.485***	4.66e-05	-0.0167***	0.160*	-0.0172***	0.0241	0.00172	-0.0404***	-0.0405***	0.0737	0.0935
log FOF	(0.0128)	(0.161)	(0.0216)	(0.00404)	(0.0920)	(0.00458)	(0.0222)	(0.0216)	(0.00736)	(0.00723)	(0.187)	(0.160)
	-0.156***	-0.200***	-0.347***	-0.0143	-0.0701**	-0.0117	-0.269***	-0.297***	0.0534**	0.0532**	-0.213*	-0.153
log GDP	(0.0248)	(0.0696)	(0.0320)	(0.00997)	(0.0339)	(0.0102)	(0.0283)	(0.0310)	(0.0262)	(0.0248)	(0.110)	(0.117)
	0.0777***	0.00814	0.0453***	0.0199***	0.000825	0.0188***	0.0457***	0.0449***	0.00367	0.00343	-0.00505	-0.00189
log HIV	(0.0120)	(0.0312)	(0.0168)	(0.00619)	(0.0168)	(0.00460)	(0.0138)	(0.0160)	(0.00809)	(0.00925)	(0.0156)	(0.0181)
				0.949***	0.786***	0.957***			1.068***	1.049***	0.591***	0.650***
Lag IMR				(0.0210)	(0.0471)	(0.0174)			(0.0479)	(0.0462)	(0.0932)	(0.0757)
A							-0.107***					
trend							(0.00987)					
Constant	4.181***	-2.688	5.741***	0.404***	-1.299	0.343**	5.214***	5.438***	-0.307	-0.279		
Constant	(0.313)	(2.823)	(0.478)	(0.152)	(1.480)	(0.146)	(0.441)	(0.471)	(0.389)	(0.323)		
Observations	392	392	392	392	392	392	392	392	392	392	284	284
R-squared	0.864	0.831		0.995	0.945							
Number of ccode		107		107	107				107	107	105	105
instruments									56	56	38	38
Sargan-Test									0	0	4.00e-06	4.00e-06
Hansen-Test									0.333	0.333	0.131	0.131
AR2									0.0682	0.0829	0.526	0.425
nauman 17									A 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Table A 1: The effect of civic activism on the relationship between health aid and infant mortality

	(1)	(2)	(2)	(0)	(0)	(10)	(1.4)	(10)	(20)	(21)	(22)
	(1)	(2)	(3)	(8)	(9)	(10)	(14)	(19) SYS-GMM 1-	(20) SYS-GMM 2-	(21) DIF-GMM 1-	(22) DIF-GMM 2-
	OLS	FE	RE	LDV-PCSE	FE-LDV	RE-LDV	RCM trend	step	step	step	step
log DAH	0.0523***	-0.000631	-0.00163	-0.00216	-0.00776	-0.00700	0.00218	-0.0180*	-0.0154**	-0.0188	-0.0225*
	(0.0141)	(0.00914)	(0.00882)	(0.00388)	(0.00514)	(0.00490)	(0.00505)	(0.0101)	(0.00696)	(0.0133)	(0.0130)
CLUBS	-0.592***	-0.205	-0.0705	0.0102	0.0747	0.0474	-0.207*	-0.146	-0.0882	0.335	0.428
	(0.212)	(0.177)	(0.172)	(0.0654)	(0.0990)	(0.0789)	(0.117)	(0.154)	(0.156)	(0.223)	(0.295)
log DAH#CLUBS	-0.00689	0.0209	-0.0403	-0.0881**	-0.0603	-0.118**	0.00430	-0.181**	-0.132	-0.00924	-0.0530
	(0.165)	(0.0681)	(0.0870)	(0.0373)	(0.0453)	(0.0470)	(0.0470)	(0.0907)	(0.116)	(0.111)	(0.103)
GOV	-0.108**	-0.0480	-0.0854*	-0.0457***	-0.0462	-0.0479***	-0.0214	-0.0777**	-0.0614	0.0360	0.00525
501	(0.0481)	(0.0611)	(0.0442)	(0.0172)	(0.0314)	(0.0178)	(0.0360)	(0.0310)	(0.0457)	(0.0912)	(0.0735)
EXPEND	-0.0361***	0.00127	-0.00883*	-0.00349	-0.00275	-0.00390*	0.00221	-0.00129	-0.000962	0.0104	0.0150*
errenta dilititati	(0.00435)	(0.00496)	(0.00469)	(0.00237)	(0.00275)	(0.00204)	(0.00310)	(0.00519)	(0.00634)	(0.00703)	(0.00774)
log FERTIL	0.724***	0.127	0.513***	0.0540	-0.00458	0.0477	0.419***	0.0637	0.0549	0.0455	0.0205
1351 - 1111	(0.0754)	(0.143)	(0.0834)	(0.0385)	(0.101)	(0.0355)	(0.0754)	(0.0850)	(0.105)	(0.192)	(0.199)
log POP	0.0197	0.678***	0.0354	-0.0112*	0.254**	-0.0135*	0.0653**	-0.0267***	-0.0292**	0.406**	0.367*
	(0.0185)	(0.184)	(0.0278)	(0.00648)	(0.102)	(0.00759)	(0.0291)	(0.00851)	(0.0116)	(0.177)	(0.190)
log GDP	-0.271***	-0.0497	-0.378***	-0.0264	-0.0420	-0.0291*	-0.364***	0.0409	0.0328	-0.0387	0.0626
	(0.0324)	(0.129)	(0.0417)	(0.0180)	(0.0761)	(0.0160)	(0.0423)	(0.0378)	(0.0355)	(0.166)	(0.183)
log HIV	0.0813***	0.0339	0.0611***	0.0217**	0.00467	0.0195***	0.0687***	0.00982	0.00627	-0.00436	-0.00437
	(0.0208)	(0.0540)	(0.0230)	(0.00888)	(0.0275)	(0.00724)	(0.0209)	(0.0114)	(0.0183)	(0.0387)	(0.0388)
Lag IMR				0.926***	0.691***	0.935***		1.068***	1.057***	0.410***	0.518***
0				(0.0343)	(0.0777)	(0.0263)		(0.0705)	(0.0804)	(0.142)	(0.115)
trend							-0.134***				
							(0.0124)				
Constant	5.128***	-7.270**	5.466***	0.514**	-2.799	0.502**	5.309***	-0.368	-0.213		
	(0.396)	(3.394)	(0.598)	(0.236)	(1.795)	(0.220)	(0.598)	(0.452)	(0.458)		
Observations	221	221	221	221	221	221	221	221	221	153	153
R-squared	0.862	0.887		0.994	0.954						
Number of ccode		68		68	68			68	68	64	64
instruments								56	56	38	38
Sargan-Test								0	0	0.0121	0.0121
Hansen-Test								0.267	0.267	0.825	0.825
AR2								0.165	0.194	0.785	0.429

Table A 1: The effect of clubs on the relationship between health aid and infant mortality

Table A 1: The effect of trust on the relationship between health aid and infant mortality

	(1) OLS	(2) FE	(3) RE	(8) LDV-PCSE	(9) FE-LDV	(10) RE-LDV	(14) RCM trend	(14) RCM2	(19) SYS-GMM 1- step	(20) SYS-GMM 2- step	(21) DIF-GMM 1- step	(22) DIF-GMM 2-step
	0.0644***	-0.0104	-0.00710	-0.00161	-0.00795	-0.00469	-0.00214	0.00112	-0.0209**	-0.0148**	-0.0130	-0.0116*
log DAH	(0.0179)	(0.00980)	(0.00710)	(0.00358)	(0.00492)	(0.00396)	(0.00439)	(0.00899)	(0.00959)	(0.00673)	(0.00815)	(0.00661)
	-0.472	-0.311	-0.417**	-0.122	-0.137	-0.0957	-0.0584	-0.412**	-0.156	-0.0432	-0.169	-0.00357
TRUST	(0.353)	(0.217)	(0.193)	(0.0751)	(0.118)	(0.0840)	(0.0901)	(0.199)	(0.173)	(0.124)	(0.258)	(0.193)
	-0.0886	0.0351	0.0180	0.0414	0.0202	0.0493	0.0415	0.0767	0.0126	0.0154	0.0117	0.0312
log DAH#TRUST	(0.176)	(0.0663)	(0.0701)	(0.0269)	(0.0435)	(0.0358)	(0.0415)	(0.0755)	(0.0120	(0.0639)	(0.0535)	(0.0265)
	-0.169***	-0.0881	-0.141***	-0.0412***	-0.0586*	-0.0435***	-0.0581*	-0.111***	-0.116***	-0.104***	-0.0218	-0.0561
GOV											-0.0218	
	(0.0555) -0.0334***	(0.0634)	(0.0403)	(0.0152)	(0.0326)	(0.0151)	(0.0335)	(0.0396) -0.00510	(0.0396)	(0.0337)	· · ·	(0.0822)
EXPEND		0.00240	-0.00679	-0.00404**	-0.00257	-0.00424**	0.00319		-0.00272	-0.00236	0.00425	0.00546
	(0.00490)	(0.00515)	(0.00455)	(0.00186)	(0.00276)	(0.00171)	(0.00306)	(0.00415)	(0.00424)	(0.00412)	(0.00536)	(0.00649)
log FERTIL	0.693***	0.167	0.596***	0.0474*	0.0205	0.0478*	0.446***	0.594***	0.102	0.108**	0.0458	0.000864
log POP	(0.0788)	(0.128)	(0.0755)	(0.0282)	(0.0949)	(0.0283)	(0.0690)	(0.0743)	(0.0640)	(0.0537)	(0.123)	(0.0907)
	-0.0115	0.431**	-0.0215	-0.0183***	0.228**	-0.0185***	0.00337	-0.00434	-0.0364***	-0.0340***	0.339**	0.192
	(0.0171)	(0.167)	(0.0257)	(0.00459)	(0.0952)	(0.00548)	(0.0274)	(0.0260)	(0.00781)	(0.00849)	(0.145)	(0.156)
log GDP	-0.201***	-0.0271	-0.301***	-0.0118	-0.0274	-0.0133	-0.316***	-0.269***	0.0233	0.0352	-0.0291	-0.0312
	(0.0341)	(0.107)	(0.0381)	(0.00966)	(0.0623)	(0.0111)	(0.0374)	(0.0379)	(0.0330)	(0.0322)	(0.113)	(0.0937)
log HIV	0.0868***	0.0166	0.0558**	0.0158**	0.00419	0.0147**	0.0565***	0.0583***	0.00759	0.00489	-0.0122	0.00469
	(0.0191)	(0.0478)	(0.0222)	(0.00762)	(0.0242)	(0.00613)	(0.0197)	(0.0223)	(0.0118)	(0.0113)	(0.0270)	(0.0207)
Lag IMR				0.960***	0.685***	0.965***			0.998***	1.000***	0.422***	0.501***
				(0.0211)	(0.0743)	(0.0199)			(0.0583)	(0.0492)	(0.122)	(0.111)
trend							-0.120***					
							(0.0111)					
Constant	4.992***	-3.341	5.672***	0.404**	-2.431	0.356**	5.879***	5.340***	0.121	-0.0214		
	(0.403)	(2.937)	(0.579)	(0.163)	(1.626)	(0.170)	(0.563)	(0.566)	(0.456)	(0.400)		
Observations	266	266	266	266	266	266	266	266	266	266	173	173
R-squared	0.818	0.876		0.995	0.950							
Number of ccode		92		92	92		92	92	92	92	84	84
instruments									56	56	38	38
Sargan-Test									0	0	0.00350	0.00350
Hansen-Test									0.336	0.336	0.617	0.617
AR2									0.0950	0.147	0.929	0.707

(2) (1)(3) (8) (9) (10)(14)(14)(19)(20)(21)(22)SYS-GMM 1-SYS-GMM 2-DIF-GMM 1-DIF-GMM 2-OLS FE RE LDV-PCSE FE-LDV **RE-LDV** RCM trend RCM 2 step step step step 0.0533*** 0.0168** 0.0216*** -0.0310*** -0.0269** 0.00758 -0.00129 -0.00450 -0.00401 0.00285 -0.0128 -0.00673 log DAH (0.0157)(0.00796)(0.00670)(0.00281)(0.00365)(0.00334)(0.00312)(0.00805)(0.0120)(0.0124)(0.0116)(0.00722)-0.760*** -0.141 -0.411*** 0.0120 0.0913 -0.0163 -0.105** -0.432*** -0.232* -0.113 0.000500 0.100 GENDER (0.123)(0.0576)(0.241)(0.132)(0.0498)(0.0629)(0.0480)(0.141)(0.127)(0.131)(0.101)(0.0626)0.101 -0.145** -0.128** 0.0186 -0.0208 0.00149 -0.101* 0.0347 0.0428 0.105 0.0460 -0.0430 log DAH#GENDER (0.128)(0.0502)(0.0214)(0.0235)(0.0255)(0.0271)(0.0588)(0.0614)(0.0577)(0.0739)(0.0554)(0.0565)-0.179*** -0.0746 -0.0890*** -0.0501*** -0.0631** -0.0518*** -0.0395** -0.0905*** -0.114*** -0.103*** 0.00386 0.0278 GOV (0.0253)(0.0108)(0.0190)(0.0320)(0.0355)(0.0453)(0.0281)(0.0121)(0.0267)(0.0353)(0.0696)(0.0792)-0.00545** -0.0222*** -0.0103*** -0.00346*** 0.000571 -0.00785 -0.00279* -0.00123 -0.0103*** -5.29e-05 0.000637 -8.35e-05 **EXPEND** (0.00401)(0.00478)(0.00317)(0.00148)(0.00256)(0.00133)(0.00193)(0.00302)(0.00395)(0.00554)(0.00453)(0.00336)0.682*** 0.284*** 0.566*** 0.0521** 0.0268 0.0490** 0.436*** 0.551*** 0.0614 0.106 0.0375 0.0425 log FERTIL (0.0634)(0.107)(0.0592)(0.0626)(0.0528)(0.0665)(0.146)(0.0250)(0.0233)(0.0509)(0.0571)(0.140)-0.0180 0.598*** 0.00411 -0.0168*** 0.191** -0.0181*** 0.0250 0.0150 -0.0365*** -0.0375*** 0.167 0.282* log POP (0.0207)(0.0130)(0.161)(0.0208)(0.00377)(0.0925)(0.00454)(0.0229)(0.00689)(0.00825)(0.169)(0.163)-0.188*** -0.155** -0.303*** -0.0130 -0.0578* -0.0142 -0.244*** -0.277*** 0.0329 0.0336 -0.208* -0.105 log GDP (0.0248)(0.0737)(0.0297)(0.00859)(0.0336)(0.00951)(0.0263)(0.0288)(0.0327)(0.0268)(0.123)(0.113)0.0769*** 0.0540*** 0.0193*** 0.0397*** 0.0600*** 0.0198 0.00567 0.0184*** 0.00645 -0.001190.0131 -0.00261 log HIV (0.0128)(0.0305)(0.0164)(0.00603)(0.0161)(0.00464)(0.0135)(0.0157)(0.00824)(0.00906)(0.0194)(0.0143)0.789*** 0.958*** 1.037*** Lag IMR 0.954*** 1.028*** 0.601*** 0.652*** (0.0196)(0.0448)(0.0174)(0.0471)(0.0454)(0.108)(0.146)trend -0.110*** (0.00966)4.869*** -1.881 0.371*** 4.995*** -0.0715 Constant -4.792*5.354*** 0.373*** 5.128*** -0.0709 (0.316)(2.859)(0.450)(0.141)(1.491)(0.143)(0.438)(0.437)(0.398)(0.340)Observations 402 402 402 402 402 402 402 402 402 402 295 295 0.857 0.830 0.995 0.945 **R-squared** 107 107 107 107 107 107 107 105 105 Number of ccode 56 38 instruments 56 38 Sargan-Test 0 0 4.94e-05 4.94e-05 Hansen-Test 0.217 0.217 0.459 0.459 AR2 0.0174 0.0375 0.900 0.937

Table A 1: The effect of gender equality on the relationship between health aid and infant mortality

This report was presented at the 5th LCSR International Annual Conference "Cultural and Economic Changes under Cross-national Perspective".

November 16 – 20, 2015 – Higher School of Economics, Moscow, Russia. <u>http://lcsr.hse.ru/en/conf2015</u>

Настоящий доклад был представлен на V ежегодной международной конференции ЛССИ «Культурные и экономические изменения в сравнительной перспективе».

16-20 ноября 2015 года – НИУ ВШЭ, Москва, Россия.

http://lcsr.hse.ru/en/conf2015