The Factorial Survey

Design Selection and Its Impact on Reliability and Internal Validity

. Nikud Suk	For his sevening parts the goal in
- Mentening low understative trionation:	· · stry terpertar
Utilities people mout says in por summari decis	inter very atopictor.
- Palaing nine prose	- mit an improvised
Parterias freebus et serects:	and we apport of
I would like to be greated by such a purty .	

Hermann Dülmer

LCSR-EBES Training Methodological Workshop

Economic and Socail Changes: Values Effects across Eurasia

Antalya, Turkey 31. March – 5. April 2015

Faculty of Management, Economics and Social Sciences Institute of Sociology und Sozial Psychology Greinstr. 2

University of Cologne

Overview

- 1. Introduction: The Factorial Survey
- 2. Random or Quota Design
- 3. Analysis of Factorial Surveys
- 4. Operationalization and Data
- 5. Conclusion

Introduction: The Factorial Survey

Factorial Survey (Vignette Analysis):

Experimental design in which the researcher

- constructs varying descriptions of situations or persons (vignettes) for a selected topic
- which will be judged by respondents under a particular aspect.

Simple Example (Value orientations according to Inglehart):

Importance of the Goals: Estimated β -coefficient from regression analysis

4.	Political (Goal:				Fo	or the gover	ning part	y the goal is:
	- Fighting	eople mor rising pric	e say in go	overnment	n: decisions:	- 1	not so impo not so impo	- v rtant - v	ery important ery important
5	l would lik	e to be go	verned by	such a pa	arty				
	1	2	3	4	5	6		8	9
	not at all		-		<u>.</u>				very strongly

Introduction: The Factorial Survey

Factors and Levels of the Factorial Survey

(Value Orientations according to Inglehart):

Factor (or Dimension)	Level (or Value)
X1: Maintaining law and order in this nation	not so important, very important
X2: Giving people more say in this nation	not so important, very important
X3: Fighting rising prices	not so important, very important
X4: Protecting freedom of speech	not so important, very important

Introduction: The Factorial Survey

Fully Crossed Vignette Universe (Full Factorial Design): 2⁴=16 Vignettes

			endent ables	
Vignette No.	X ₁	X ₂	X ₃	x ₄
1	-1	-1	-1	-1
2	-1	-1	-1	1
2 3	-1	-1	1	-1
4	-1	-1	1	1
5	-1	1	-1	-1
6	-1	1	-1	1
7	-1	1	1	-1
8	-1	1	1	1
9	1	-1	-1	-1
10	1	-1	-1	1
11	1	-1	1	-1
12	1	-1	1	1
13	1	1	-1	-1
14	1	1	-1	1
15	1	1	1	-1
16	1 1	1 1	1 1	1

Coding: -1: not so important 1: very important

Features of the Vignette Universe:

- **orthogonal**: all main effects and interaction effects can be estimated uncorrelated
- **balanced**: each level occurs equally often within each vignette factor, which means that the intercept is orthogonal to each effect

The number of vignettes increases as a *power function* of the number of factors (x-variables) and/or the number of levels

Each respondent can in general only judge a sample (vignette set) of the fully crossed vignette universe.

2 approaches for generating vignette samples can be distinguished:

- 1. Random Designs
- 2. Quota Designs

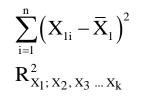
Random Designs (Rossi/Anderson 1982, Jasso 2006):

• **Basic idea**: Representing the vignette universe through different vignette samples of same size (simple random design without replacement)

Quota Designs:

- **Basic idea**: Representing the central features of the vignette universe via generating one or relatively few vignette samples
 - a) **Classical Fractional Factorial Designs** (Gunst/Mason 1991, Steiner/Atzmüller 2006):
 - always orthogonal but not always balanced
 - *Problem*: especially when different factors have different prime number of levels (2, 3, 5) there exists frequently no fractional factorial design within the limits of a reasonable set size
 - b) **D-efficient Designs (**Kuhfeld et al. 1994, Dülmer 2007):
 - Orthogonality and balance are simultaneously optimized (*Minimizing the standard error of the estimated* β -coefficients)

$$\hat{\sigma}(\hat{\beta}_{1}) = \sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2} / (n-k-1)}{\sum_{i=1}^{n} (X_{1i} - \overline{X}_{1})^{2} \cdot (1 - R_{X_{1};X_{2},X_{3}...X_{k}}^{2})}}$$


where

 $\hat{\sigma}(\hat{\beta}_1)$

is the estimated standard error of the estimated unstandardized regression coefficient of X_1 ,

is the estimated error variance, i.e. the quotient of the observed

error variance and the remaining degrees of freedom (*n* refers to the set size, *k* to the number of estimated β -coefficients for the included predictor variables),

 $\sum_{i=1}^{n} e_i^2 / (n-k-1)$

is the variation of X_1 across the vignettes 1 to n, and

is the coefficient of multiple determination of the predictor variables X_2 to X_k on X_1 .

Analysis of Factorial Surveys

Multilevel Analysis:

Since in general respondents have to answer more than one vignette, the collected data are hierarchically nested.

Mathematical equation system for a multilevel model with one vignette variable X and one respondent characteristic Z:

Vignette Level (Level 1): $Y_{ij} = \beta_{0j} + \beta_{1j}X_{1ij} + r_{ij}$

Respondent Level (Level 2):
$$\beta_{0j} = \gamma_{00} + \gamma_{01}Z_j + u_{0j}$$

 $\beta_{1j} = \gamma_{10} + u_{1j}$

The more homogenous the answer behavior of the respondents, the less u-terms become significant (OLS-regression, if no u-term becomes significant) \implies **Depending on the heterogeneity of the respondents' answer behavior**, the estimated β -coefficients are stronger based on the **estimates for the separate vignette sets** or on the **estimates for the combined vignette sample**.

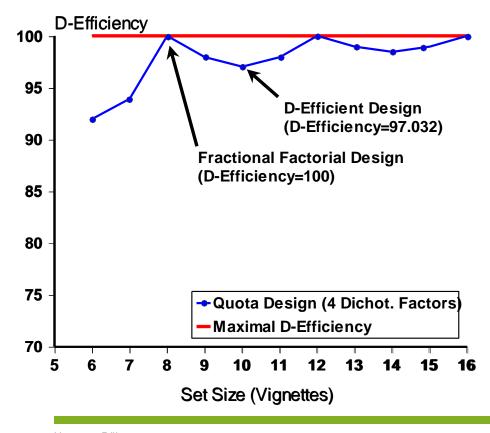
Hermann Dülmer

Given Example: Value Orientations According to Inglehart

Yardstick for the empirical design comparison:

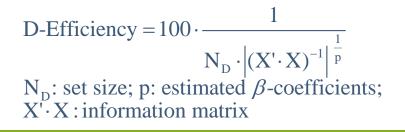
- Fully crossed Factorial Design (2⁴=16 vignettes)
- Vignettes were presented to the respondents in randomized order (paper and pencil interviews)

Participants:


- 137 students (first session of 2 identical methodological courses, University of Cologne, October 2006)
- 5 questionnaires had to be excluded (not sufficiently filled out)
- Net sample size: 132 students (72 females, 60 males)

Design comparison:

- 2 Quota Designs (Confounded Factorial Design of set size 8 and Confounded D-efficient Design of set size 10)
- 2 Random Designs (without replacement, set size of 8 and 10 respectively)


Hermann Dülmer

Quota Designs:

D-Efficiency (qualitative factors):

- **Range**: 0 to 100 (for standardized orthogonal contrast coding)
- **Maximum**: only for orthogonal, balanced designs
- D-Efficiency is independent of the set size
- Generating D-efficient Designs: Computerprogramme (SAS)

Factorial			Fac	tors				C	Confoun	ding Str	ucture		
Designs:	Vignette- number	x ₁	X ₂	X ₃	X ₄	x ₁ x ₂ =	x ₁ x ₃ =	x ₁ x ₄ =	x ₁ x ₂ x ₃ =		$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4 =$	$x_2 x_3 x_4$ =	$ \begin{array}{c} \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \\ = \end{array} $
						X ₃ X ₄	$\mathbf{X}_{2}\mathbf{X}_{4}$	$\mathbf{X}_2\mathbf{X}_3$	X 4	X ₃	X ₂	X 1	Interc.
Fractional Factorial	Set 1												
Design	1	-	-	-	-	+	+	+	-	-	-	-	+
Deelgh	2	-	-	+	+	+	-	-	+	+	-	-	+
Construction	3	-	+	-	+	-	+	-	+	-	+	-	+
	4	-	+	+	-	-	-	+	-	+	+	-	+
(-=0, +=1):	5	+	-	-	+	-	-	+	+	-	-	+	+
	6	+	-	+	-	-	+	-	-	+	-	+	+
	7	+	+	-	-	+	-	-	-	-	+	+	+
	8	+	+	+	+	+	+	+	+	+	+	+	+
$\mathbf{V} + \mathbf{V} + \mathbf{V} + \mathbf{V} = 0$	Vignette-	X 1	X ₂	X 3	X ₄	x ₁ x ₂	x ₁ x ₃	x ₁ x ₄	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$x_1 x_2 x_3 x_4$
$X_1 + X_2 + X_3 + X_4 = 0,$	number					=	=	=	=	=	=	=	=
modulo 2						-X ₃ X ₄	-X ₂ X ₄	$-\mathbf{X}_2\mathbf{X}_3$	-X ₄	-X ₃	-X ₂	-X ₁	-Interc.
	Set 2												
$X_1 + X_2 + X_3 + X_4 = 1,$	1	-	-	-	+	+	+	-	-	+	+	+	-
1 2 5 1	2	-	-	+	-	+	-	+	+	-	+	+	-
modulo 2	3	-	+	-	-	-	+	+	+	+	-	+	-
	4	-	+	+	+	-	-	-	-	-	-	+	-
	5	+	-	-	-	-	-	-	+	+	+	-	-
	6	+	-	+	+	-	+	+	-	-	+	-	-
	7	+	+	-	+	+	-	+	-	+	-	-	-
	8	+	+	+	-	+	+	-	+	-	-	-	-

Hermann Dülmer

Factorial Designs:

a) **2 half fractional factorial Designs:** Selecting either Set 1 *or* Set 2

b) **1 confounded factorial Design** Selecting both Set 1 *and* Set 2

		Fac	tors				(Confoun	ding Str	ucture		
Vignette-	X ₁	X ₂	X ₃	x ₄	x ₁ x ₂	x ₁ x ₃	x ₁ x ₄	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4$		$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
number					=	=	=	=	=	=	=	=
0.1.1					X_3X_4	$\mathbf{X}_{2}\mathbf{X}_{4}$	X_2X_3	X 4	X ₃	X ₂	X 1	Interc.
Set 1												
1	-	-	-	-	+	+	+	-	-	-	-	+
2	-	-	+	+	+	-	-	+	+	-	-	+
3	-	+	-	+	-	+	-	+	-	+	-	+
4	-	+	+	-	-	-	+	-	+	+	-	+
5	+	-	-	+	-	-	+	+	-	-	+	+
6	+	-	+	-	-	+	-	-	+	-	+	+
7	+	+	-	-	+	-	-	-	-	+	+	+
8	+	+	+	+	+	+	+	+	+	+	+	+
Vignette-	X ₁	X ₂	X ₃	X ₄	$\mathbf{x}_1 \mathbf{x}_2$	x ₁ x ₃	x ₁ x ₄	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
number			_		=	=	=	=	=	=	=	=
					-x ₃ x ₄	-x ₂ x ₄	-x ₂ x ₃	-x ₄	-X ₃	-X ₂	- x 1	-Interc.
Set 2												
1	-	-	-	+	+	+	-	-	+	+	+	-
2	-	-	+	-	+	-	+	+	-	+	+	-
3	-	+	-	-	-	+	+	+	+	-	+	-
4	-	+	+	+	-	-	-	-	-	-	+	-
5	+	-	-	-	-	-	-	+	+	+	-	-
6	+	-	+	+	-	+	+	-	-	+	-	-
7	+	+	-	+	+	-	+	-	+	-	-	-
8	+	+	+	-	+	+	-	+	-	-	-	-

Factorial Designs:

a) **2 half fractional factorial Designs:** Selecting either Set 1 *or* Set 2 Aliasing: Confounding within a vignette set

b) **1 confounded factorial Design** Selecting both Set 1 *and* Set 2

		Fac	tors				C	Confoun	ding Str	ucture	-	
Vignette-	x ₁	X ₂	X ₃	X 4	x ₁ x ₂	x ₁ x ₃	x ₁ x ₄	_	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	-		$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_3$
number					=	=	=	=	=	=	=	=
-					X_3X_4	$\mathbf{X}_2\mathbf{X}_4$	$\mathbf{X}_2\mathbf{X}_3$	X ₄	X ₃	X ₂	X 1	Interc.
Set 1												
1	-	-	-	-	+	+	+	-	-	-	-	+
2	-	-	+	+	+	-	-	+	+	-	-	+
3	-	+	-	+	-	+	-	+	-	+	-	+
4	-	+	+	-	-	-	+	-	+	+	-	+
5	+	-	-	+	-	-	+	+	-	-	+	+
6	+	-	+	-	-	+	-	-	+	-	+	+
7	+	+	-	-	+	-	-	-	-	+	+	+
8	+	+	+	+	+	+	+	+	+	+	+	+
Vignette-	X ₁	X ₂	X 3	X ₄	x ₁ x ₂	x ₁ x ₃	x ₁ x ₄	$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_3$
number			_		=	=	=	=	=	=	=	=
					-x ₃ x ₄	-x ₂ x ₄	-x ₂ x ₃	-X4	-X ₃	-X ₂	- x 1	-Interc
Set 2												
1	-	-	-	+	+	+	-	-	+	+	+	-
2	-	-	+	-	+	-	+	+	-	+	+	-
3	-	+	-	-	-	+	+	+	+	-	+	-
4	-	+	+	+	-	-	-	-	-	-	+	-
5	+	-	-	-	-	-	-	+	+	+	-	-
6	+	-	+	+	-	+	+	-	-	+	-	-
7	+	+	-	+	+	-	+	-	+	-	-	-
8	+	+	+	-	+	+	-	+	-	-	-	-

Factorial Designs:

a) **2 half fractional factorial Designs:** Selection of either Set 1 *or* Set 2 Aliasing: Confounding within a vignette set

b) **1 confounded factorial Design** Selection of both Set 1 *and* Set 2 **Confounding**: Confounding across vignette sets

		Fac	tors	_		_	(Confoun	ding Str	ucture		
Vignette- number	x ₁	x ₂	X ₃	x ₄	x ₁ x ₂ =	x ₁ x ₃ =	x ₁ x ₄		$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$		$\mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$x_1 x_2 x_3 x_4$
number					- x ₃ x ₄	$\mathbf{x}_{2}\mathbf{x}_{4}$	$\mathbf{x}_{2}\mathbf{x}_{3}$	- x ₄	- x ₃	- x ₂	- x ₁	Interc.
Set 1												
1	-	-	-	-	+	+	+	-	-	-	-	+
2	-	-	+	+	+	-	-	+	+	-	-	+
3	-	+	-	+	-	+	-	+	-	+	-	+
4	-	+	+	-	-	-	+	-	+	+	-	+
5	+	-	-	+	-	-	+	+	-	-	+	+
6	+	-	+	-	-	+	-	-	+	-	+	+
7	+	+	-	-	+	-	-	-	-	+	+	+
8	+	+	+	+	+	+	+	+	+	+	+	+
Vignette-	X ₁	X ₂	X 3	x ₄	x ₁ x ₂	x ₁ x ₃	x ₁ x ₄	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
number					=	=	=	=	=	=	=	=
					-X ₃ X ₄	-x ₂ x ₄	-x ₂ x ₃	-x ₄	-X ₃	-X ₂	- x 1	-Interc.
Set 2												
1	-	-	-	+	+	+	-	-	+	+	+	-
2	-	-	+	-	+	-	+	+	-	+	+	-
3	-	+	-	-	-	+	+	+	+	-	+	-
4	-	+	+	+	-	-	-	-	-	-	+	-
5	+	-	-	-	-	-	-	+	+	+	-	-
6	+	-	+	+	-	+	+	-	-	+	-	-
7	+	+	-	+	+	-	+	-	+	-	-	-
8	+	+	+	-	+	+	-	+	-	-	-	-

Confounded D-efficient Design (set size 10):

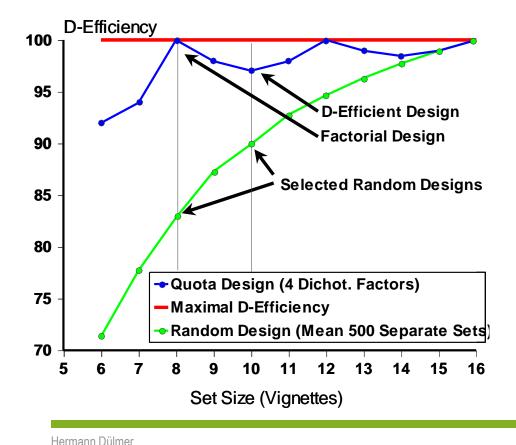
		C)-efficie	nt Desig	n 1	D-efficient Design 2						
Variable:		X ₁	X ₂	X ₃	X ₄		X ₁	X ₂	X ₃	X ₄		
Balance:		4/6	4/6	5/5	5/5		4/6	5/5	5/5	5/5		
Correlations:	X ₁		.167	.000	.000	Х ₁		.000	.000	.000		
	X ₂			.000	.000	X ₂			.200	.200		
	X ₃				200	X ₃				.200		

Balance: Relationship between the two levels "-1" and "+1";

Selected initial design: Design 1 (D1, D-Efficiency: 97,032):

D1: Set 1: Vignettes 1 to 8, Set 2: Vignettes 7 and 8, D5: Set 1: Vignettes 3 and 4, Set 2: Vignettes 1 to 8, D2: Set 1: Vignettes 1 to 8, Set 2: Vignettes 3 and 4, D6: Set 1: Vignettes 5 and 6, Set 2: Vignettes 1 to 8, D3: Set 1: Vignettes 1 to 8, Set 2: Vignettes 5 and 6, D7: Set 1: Vignettes 7 and 8, Set 2: Vignettes 1 to 8, D4: Set 1: Vignettes 1 to 8, Set 2: Vignettes 1 and 2, D8: Set 1: Vignettes 1 and 2, Set 2: Vignettes 1 to 8.

Generating D2 to D8: Permuting (changing) the assignment between the levels of the vignette characteristics and the respective levels of the variables of the selected D-efficient design.


D-Efficiency of the confounded D-efficient Design (incl. all interaction terms: 100) (main effect only model: D-Efficiency of 100 already reached by using D1 to D4 or D5 to D8)

Hermann Dülmer

Random Designs (without replacement):

D-Efficiency (qualitative factors):

- completely **heterogeneous** answer behavior: green line
- completely **homogeneous** answer behavior (OLS-regression): asymptotically approaching the red line (the same applies to the confounded D-efficient Design)

Design Comparison:

Set size of 8 vignettes:

- Confounded Factorial Design (2 balanced half fractional factorial Designs: D-Efficiency: 100)
- Random Design (without replacement)

Set size of 10 vignettes:

- Confounded D-efficient Design (D-Efficiency of each of each separate vignette set: 97.032)
- Random Design (without replacement)

Vignette sets (Quota Design) and vignettes (Random Design) were respectively assigned randomly to the respondents.

To get different assignments, this procedure was repeated 49 times.

		Full Factorial Design	Simple R Desi (50 Sam	gn	Confo		actorial D mples)	esign	Simple R Desi (50 San	gn	Confoun Efficient I (50 Sam	Design
Set Size	n	16	8				8		1(10	
Respondents Vignettes	n n	132 2112	132 1056			1 10	32 56		132 1320		132 1320	
vignettes		2112	Mean	, Std	Mean	Std	Mean:	Std	Mean	, Std	Mean	Std
			mean	Dev.	mean	Dev.	Set Effect	Dev.	mean	Dev.	mean	Dev.
γ Intercept		3.515	3.514	.029	3.514	.022	110	.082	3.511	.025	3.519	.014
γ Gender (Fema	le)	.105	.109	.038	.114	.026			.113	.023	.109	.023
γ Order		.428	.430	.031	.430	.023	095	.065	.429	.032	.427	.022
γ Government		.668	.671	.027	.674	.026	132	.043	.671	.024	.668	.020
γ Price		.320	.321	.031	.321	.018	078	.038	.320	.028	.317	.019
γ Speech		1.107	1.113	.033	1.106	.025	045	.058	1.102	.023	1.104	.019
σ Intercept		.078	.085	.004	.081	.002	.081	.002	.082	.003	.080	.002
σ Gender (Fema	le)	.077	.083	.004	.080	.003			.080	.003	.079	.002
σ Order		.068	.074	.003	.072	.002	.072	.002	.072	.002	.072	.002
σ Government		.049	.058	.002	.055	.003	.055	.003	.054	.002	.053	.002
σ Price		.044	.054	.002	.051	.002	.051	.002	.049	.002	.049	.002
σ Speech		.054	.062	.003	.058	.002	.058	.002	.059	.002	.058	.002
t Intercept		44.924	41.624	1.885	43.423	1.254	-1.357	1.016	43.027	1.322	43.861	1.137
t Gender (Femal	e)	1.372	1.322	.482	1.424	.328			1.416	.297	1.384	.300
t Order		6.307	5.800	.518	5.960	.376	-1.318	.906	5.959	.490	5.971	.357
t Government		13.767	11.671	.554	12.327	.908	-2.419	.786	12.341	.675	12.561	.648
t Price		7.313	5.935	.589	6.362	.381	-1.552	.778	6.478	.579	6.547	.433
t Speech		20.646	18.038	1.118	19.021	.758	762	.991	18.777	.789	19.188	.732

		Full Factorial Design	Simple F Des (50 Sar	ign	Confo	unded Fa (50 San	ctorial De ples)	esign	Des	Random sign mples)	Confoun Efficient (50 San	Design
Set Size Rspondents Vignettes	n n n	16 132 2112	13 105			8 132 1056			1 13 132		10 132 1320	
			Mean	Std Dev.	Mean	Std Dev.	Mean: Set- Effect	Std Dev.	Mean	Std Dev.	Mean	Std Dev.
τ ₀₀ Intercept		.708	.715	.088	.661	.049			.707	.056	.683	.045
τ ₁₁ Order		.513	.504	.059	.491	.040			.517	.038	.515	.042
τ ₂₂ Governme	nt	.218	.209	.031	.200	.038			.222	.030	.212	.029
τ ₃₃ Price		.159	.157	.033	.139	.026			.152	.023	.154	.023
τ ₄₄ Speech		.286	.278	.046	.250	.027			.287	.034	.282	.027
σ ²		1.492	1.494	.117	1.590	.091			1.484	.059	1.537	.060
χ ² _{U00} Intercep	t	1117.399	480.779	62.105	561.470	46.023			631.731	58.515	670.856	44.576
χ ² _{U11} Order		852.117	372.845	35.095	452.881	33.059			496.000	35.679	541.872	40.957
χ² _{U22} Governm	ent	436.589	228.891	18.550	261.856	27.865			289.293	27.840	300.424	26.114
χ ² _{U33} Price		354.125	207.711	22.790	221.675	18.980			240.638	20.305	254.795	21.400
χ² _{U44} Speech		532.550	267.545	33.554	294.477	22.641			333.976	34.769	358.390	25.550
R ₁ ²		.368	.372	.018	.378	.014			.368	.016	.366	.011
R ₂ ²		.013	.132	.050	.025	.024			.097	.035	.033	.028
Iterations		5.000	26.880	11.508	6.320	2.938			16.820	4.241	13.080	2.656

Hermann Dülmer

Conclusion

Confounded Factorial Design (balanced, orthogonal):

- highest D-Efficiency: most reliable design with highest internal validity (independent of the heterogeneity of the answer behavior of the respondents)
- *however*: for more complex research questions such a design rarely exists within the limits of a reasonable set size

Confounded D-efficient Design:

- completely heterogeneous answer behavior:
 - same D-Efficiency as a simple Quota Design,
 - higher D-Efficiency as a simple Random Design
- increasingly **homogeneous** answer behavior:
 - increasingly higher D-Efficiency as a simple Quota Design,
 - Random Design comes closer to the D-Efficiency of a Confounded D-Efficient Design
- *however*: constructing such a Design for more complex research questions is rather time-consuming

Not applicable: in cases where *logically impossible combinations* have to be excluded (for instance, a physician with only an eighth-grade education)

Conclusion

Random Design (without replacement):

- completely **homogeneous** answer behavior (very unlikely):
 - very high D-efficiency: highly reliable design with very high internal validity
- increasingly heterogeneous answer behavior (likely)
 - especially for small set sizes: low D-efficiency and for that reason lower internal validity as Quota Designs (*no systematic bias*)

Simple Quota Designs (Factional Factorial Designs, D-Efficient Designs):

- Applicable: small vignette sets and heterogeneous answer behavior (representative surveys)
- *Predisposition*: the aliased interaction effects are negligible in comparison to the affected b-coefficients included in the multilevel model
- *however*: in contrast to other designs it is impossible to test afterwards whether nonnegligible interaction effects exist which were not included when the design was constructed.

Thank You for Your Attention!

Dülmer, Hermann (forthcoming): The Factorial Survey. Design Selection and its Impact on Reliability and Internal Validity. Sociological Methods and Research.

University of Cologne

Hermann Dülmer

Hermann Dülmer

	Fu	ll Factoria Design		ole Random Design Samples)	Factoria	ounded al Design amples)	De	Random sign amples)	D-Efficie	ounded ent Design amples)	
Set Size r	1	16		8		8		10		10	
Respondents r	า	132		132		32		32		32	
Vignettes r	1	2112		1056	10	56	13	320	13	1320	
	b	t	b Mea	t n Mean	b Mean	t Mean	b Mean	t Mean	b Mean	t Mean	
Intercept	3.51	5 44.92	4** 3.51	6 41.601	3.515	43.222	3.509	43.020	3.519	43.932	
Gender (Female)	.10	5 1.37	.10	9 1.322	.113	1.412	.113	1.416	.109	1.385	
Or (Order)	.42	8 6.30	.429	5.769	.432	5.945	.427	5.950	.427	6.000	
Go (Government	t) .66	8 13.76	.67	0 11.600	.674	12.247	.669	12.323	.668	12.714	
Pr (Prise)	.32	0 7.31	1** .32	2 5.952	.321	6.319	.319	6.496	.317	6.589	
Sp (Speech)	1.10	7 20.64	5** 1.11	5 18.040	1.106	18.913	1.102	18.847	1.105	19.286	
Or x Go	03	3 -1.27	103	899	031	832	036	-1.015	026	-0.748	
Or x Pr	.02	2.86	.03 [,]	I .736	.019	.487	.024	.673	.024	.700	
Or x Sp	.12	0 4.66	.12	2 2.898	.118	3.093	.120	3.375	.122	3.601	
Go x Pr	09	9 -3.85	i ^{1**} 09	7 -2.446	099 ¹⁾	-2.604	108	-3.022	094	-2.768	
Go x Sp	.02	7 1.05	.02	2.546	.029 ¹⁾	.750	.027	.775	.033	.972	
Pr x Sp	03	0 -1.08	032	2756	029 ¹⁾	760	025	703	029	852	
Or x Go x Pr	.05	3 2.04	5* .054	4 1.274	.047 ¹⁾	.775	.048	1.358	.056	1.449	
Or x Go x Sp	.08	0 3.11	4** .073	3 1.748	.077 ¹⁾	1.531	.085	2.361	.079	2.105	
Or x Pr x Sp	.12	9 5.03	.12	3.049	.132 ¹⁾	2.397	.131	3.686	.129	3.222	
Go x Pr x Sp	.10	7 4.14	.10	3 2.579	.093 ¹⁾	1.293	.105	2.957	.106	2.491	
Or x Go x Pr x S	p .09	9 3.85	.09	7 2.325	.109 ¹⁾	1.347	.099	2.805	.093	2.166	

Note: *: $p \le 0.05$, **: $p \le 0.05$; 1) Set effects; only the intercept and slope of all main effects are estimated with their own variance component (variance components of all interaction effects turned out to be insignificant for the Full Factorial Design); consequence: t-values of the set effects are underestimated since they cannot be fixed independently of the intercept/main effect with which they are confounded. This explains why the t-values for the three- and four-way interaction effects are on average lower for the Confounded Factorial Design than for the Simple Random Design of set size 8.

Formula for Calculating the D-Efficiency:

D-Efficency =
$$100 \cdot \frac{1}{N_D \cdot \left| (X' \cdot X)^{-1} \right|^{\frac{1}{p}}} = 100 \cdot \left(\frac{1}{N_D} \cdot \left| X' \cdot X \right|^{\frac{1}{p}} \right)$$

N_D: Set Size

- X'•X: Information Matrix (X-Variables Including the Intercept)
- p: Number of Estimated β -Coefficients (Including the Intercept)

SPSS Syntax-File for Calculating D-Efficiency

Half Fractional Factorial Design (Set 1):

MATRIX. comp des_x={ 1,-1,-1,-1,-1 1,-1,-1, 1, 1, 1 1,-1, 1, -1, 1 1,-1, 1, 1, -1 1, 1, -1, -1, 1 1, 1, -1, 1, -1 1, 1 , 1 , -1 , -1 1, 1 , 1 , 1 . }. comp des xi={ 1, 1, 1, 1, 1, 1, 1, 1;-1 , -1 , -1 , -1 , 1 , 1 , 1 , 1 ; -1 , -1 , 1 , 1 , -1 , -1 , 1 , 1; -1 , 1 , -1 , 1 , -1 , 1 , -1 , 1; -1 , 1 , 1 , -1 , 1 , -1 , 1 **}**. comp info_xx= des_xi* des_x. print info xx. end matrix.

```
MATRIX.

comp covm={

8,0,0,0,0;

0,8,0,0,0;

0,0,8,0,0;

0,0,0,8,0;

0,0,0,8,0;

0,0,0,0,8,0;

0,0,0,0,8

}.

comp fpeff=Det(covm).

comp deffic=100*((1/8)*(fpeff**(1/5))).

print deffic.

end matrix.
```


Orthogonal Contrast Coding:

	Number of	Levels of a Fa	ctor			
	2	3		4		
а	1	1	-1	1	-1	-1
b	-1	0	2	0	2	-1
С		-1	-1	0	0	3
d				-1	-1	-1

Standardized Orthogonal Contrast Coding:

	Number of L	evels of a Fac				
	2	3		4		
а	1.00	1.22	71	1.41	82	58
b	-1.00	.00	1.41	.00	1.63	58
С		-1.22	71	.00	.00	1.73
d				-1.41	.82	58

Folie: 28

Hermann Dülmer

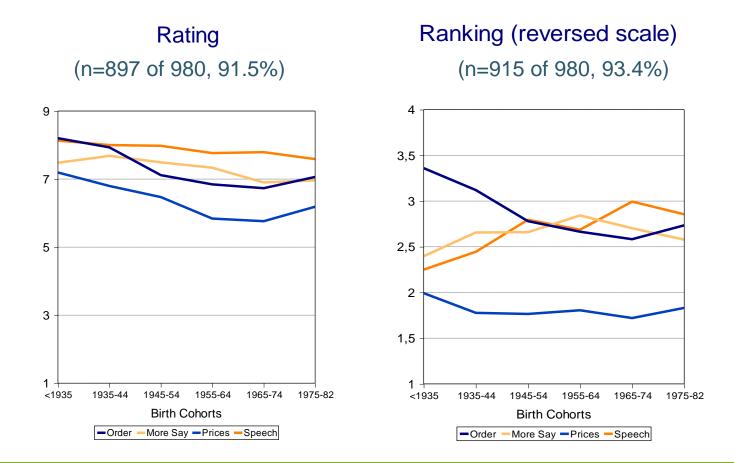
Empirical Bayes Estimator (EB) for the ANOVA-Model:

$$\hat{\beta}_{0j}^{\text{EB}} = \lambda_j \cdot \hat{\beta}_{0j}^{\text{OLS}} + (1 - \lambda_j) \cdot \hat{\gamma}_{00}$$

$$\lambda_{j} = \frac{\tau_{00}}{\tau_{00} + (\sigma^{2} / n_{j})}$$

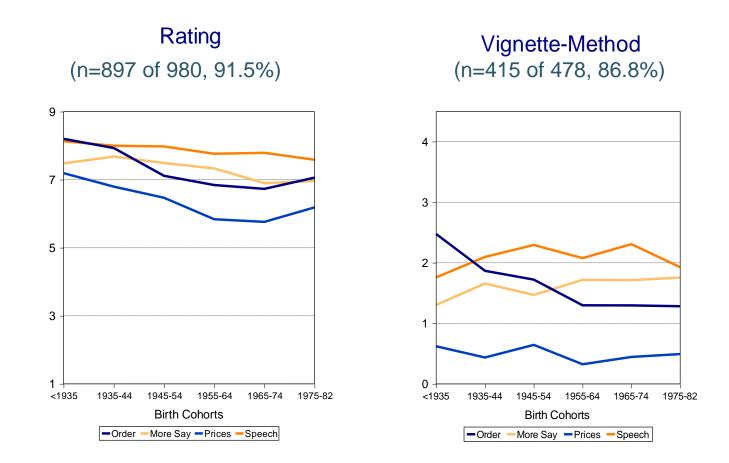
Folie: 29

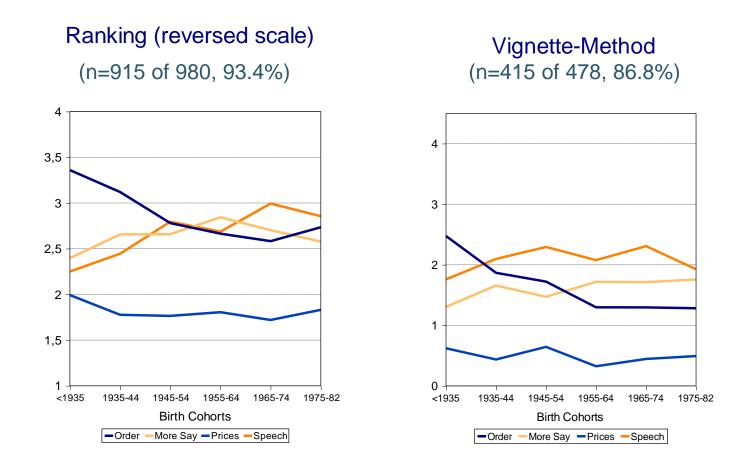
University of Cologne


Hermann Dülmer

Hermann Dülmer

University of Cologne


Empirical Comparison: Rating and Ranking (Representative Survey, Cologne 2001)



Empirical Comparison: Rating and Ranking (Representative Survey, Cologne 2001)

Empirical Comparison: Rating and Ranking (Representative Survey, Cologne 2001)

		ll Factorial Design	De	Simple Random Design (50 Samples)		ounded al Design amples)	Simple Random Design (50 Samples)		Confounded D-Efficient Design (50 Samples)		
Set Size	<u>າ</u>	16		8		8		10		10	
	า	132	132 1056			32		32	132 1320		
Vignettes I	า	2112			10	56	13	320			
	b	t	b Mean	t Mean	b Mean	t Mean	b Mean	t Mean	b Mean	t Mean	
Intercept	3.515	44.924**	3.516	41.601	3.515	43.222	3.509	43.020	3.519	43.932	
Gender (Female	.105	1.372	.109	1.322	.113	1.412	.113	1.416	.109	1.385	
Or (Order)	.428	6.307**	.429	5.769	.432	5.945	.427	5.950	.427	6.000	
Go (Governmen	t) .668	13.766**	.670	11.600	.674	12.247	.669	12.323	.668	12.714	
Pr (Prise)	.320	7.311**	.322	5.952	.321	6.319	.319	6.496	.317	6.589	
Sp (Speech)	1.107	20.645**	1.115	18.040	1.106	18.913	1.102	18.847	1.105	19.286	
Or x Go	033	-1.271	038	899	031	832	036	-1.015	026	-0.748	
Or x Pr	.022	.866	.031	.736	.019	.487	.024	.673	.024	.700	
Or x Sp	.120	4.661**	.122	2.898	.118	3.093	.120	3.375	.122	3.601	
Go x Pr	099	-3.851**	097	-2.446	099 ¹⁾	-2.604	108	-3.022	094	-2.768	
Go x Sp	.027	1.050	.022	.546	.029 ¹⁾	.750	.027	.775	.033	.972	
Pr x Sp	030	-1.087	032	756	029 ¹⁾	760	025	703	029	852	
Or x Go x Pr	.053	2.045*	.054	1.274	.047 ¹⁾	.775	.048	1.358	.056	1.449	
Or x Go x Sp	.080.	3.114**	.073	1.748	.077 ¹⁾	1.531	.085	2.361	.079	2.105	
Or x Pr x Sp	.129	5.030**	.128	3.049	.132 ¹⁾	2.397	.131	3.686	.129	3.222	
Go x Pr x Sp	.107	4.145**	.108	2.579	.093 ¹⁾	1.293	.105	2.957	.106	2.491	
Or x Go x Pr x S	р.099	3.851**	.097	2.325	.109 ¹⁾	1.347	.099	2.805	.093	2.166	

Note: *: $p \le 0.05$, **: $p \le 0.01$; 1) Set effects; only the intercept and slope of all main effects are estimated with their own variance component (variance components of all interaction effects turned out to be insignificant for the Full Factorial Design); consequence: t-values of the set effects are underestimated since they cannot be fixed independently of the intercept/main effect with which they are confounded. This explains why the t-values for the three- and four-way interaction effects are on average lower for the Confounded Factorial Design than for the Simple Random Design of set size 8.

Hermann Dülmer

		Full Simple Random Factorial Design Design (50 Samples)			Confo		actorial D mples)	esign	Simple Random Design (50 Samples)		Confounded D- Efficient Design (50 Samples)	
Set Size	n	16		8	8			1	0	10		
Respondents n		132							132		132	
Vignettes	n	2112	1056			1056			1320		1320	
			Mean	Std	Mean	Std	Mean:	Std	Mean	Std	Mean	Std
				Dev.		Dev.	Set Effect	Dev.		Dev.		Dev.
γ Intercept		3.515	3.514	.029	3.514	.022	110	.082	3.511	.025	3.519	.014
γ Gender (Female)		.105	.109	.038	.114	.026			.113	.023	.109	.023
γ Order		.428	.430	.031	.430	.023	095	.065	.429	.032	.427	.022
γ Government		.668	.671	.027	.674	.026	132	.043	.671	.024	.668	.020
γ Price		.320	.321	.031	.321	.018	078	.038	.320	.028	.317	.019
γ Speech		1.107	1.113	.033	1.106	.025	045	.058	1.102	.023	1.104	.019
σ Intercept		.078	.085	.004	.081	.002	.081	.002	.082	.003	.080	.002
σ Gender (Fem	ale)	.077	.083	.004	.080	.003			.080	.003	.079	.002
σ Order		.068	.074	.003	.072	.002	.072	.002	.072	.002	.072	.002
$\sigma \text{ Government}$.049	.058	.002	.055	.003	.055	.003	.054	.002	.053	.002
σ Price		.044	.054	.002	.051	.002	.051	.002	.049	.002	.049	.002
σ Speech		.054	.062	.003	.058	.002	.058	.002	.059	.002	.058	.002
t Intercept		44.924	41.624	1.885	43.423	1.254	-1.357	1.016	43.027	1.322	43.861	1.137
t Gender (Fema	ale)	1.372	1.322	.482	1.424	.328			1.416	.297	1.384	.300
t Order		6.307	5.800	.518	5.960	.376	-1.318	.906	5.959	.490	5.971	.357
t Government		13.767	11.671	.554	12.327	.908	-2.419	.786	12.341	.675	12.561	.648
t Price		7.313	5.935	.589	6.362	.381	-1.552	.778	6.478	.579	6.547	.433
t Speech		20.646	18.038	1.118	19.021	.758	762	.991	18.777	.789	19.188	.732

Hermann Dülmer

	Full Factorial Design	Simple I Des (50 Sai	•	Confounded Factorial Design (50 Samples)				Simple Random Design (50 Samples)		Confounded D- Efficient Design (50 Samples)	
Set SizenRspondentsnVignettesn	16 132 2112	8 132 1056		8 132 1056				10 132 1320		10 132 1320	
		Mean	Std Dev.	Mean	Std Dev.	Mean: Set- Effect	Std Dev.	Mean	Std Dev.	Mean	Std Dev.
τ ₀₀ Intercept	.708	.715	.088	.661	.049			.707	.056	.683	.045
τ ₁₁ Order	.513	.504	.059	.491	.040			.517	.038	.515	.042
T ₂₂ Government	.218	.209	.031	.200	.038			.222	.030	.212	.029
τ ₃₃ Price	.159	.157	.033	.139	.026			.152	.023	.154	.023
т ₄₄ Speech	.286	.278	.046	.250	.027			.287	.034	.282	.027
σ²	1.492	1.494	.117	1.590	.091			1.484	.059	1.537	.060
χ² _{U00} Intercept	1117.399	480.779	62.105	561.470	46.023			631.731	58.515	670.856	44.576
χ ² U11 Order	852.117	372.845	35.095	452.881	33.059			496.000	35.679	541.872	40.957
χ ² _{U22} Government	436.589	228.891	18.550	261.856	27.865			289.293	27.840	300.424	26.114
χ² _{U33} Price	354.125	207.711	22.790	221.675	18.980			240.638	20.305	254.795	21.400
χ² _{U44} Speech	532.550	267.545	33.554	294.477	22.641			333.976	34.769	358.390	25.550
R ₁ ²	.368	.372	.018	.378	.014			.368	.016	.366	.011
R ₂ ²	.013	.132	.050	.025	.024			.097	.035	.033	.028
Iterations	5.000	26.880	11.508	6.320	2.938			16.820	4.241	13.080	2.656

Hermann Dülmer

Folie: 36

University of Cologne

This report was presented at the training methodological workshop "Economic and Social Changes: values effects across Eurasia".

March 31 - April 6, 2015 – Turkey.

http://lcsr.hse.ru/en/seminar m2015

Настоящий доклад был представлен на методологическом учебном семинаре «Экономические и социальные изменения: оценка эффектов по всей Евразии».

31 марта – 6 апреля 2015 года – Турция.

http://lcsr.hse.ru/seminar m2015