Boris Sokolov
LCSR, Higher School of Economics
LCSR-EBES training methodological workshop
04-05.04.2015

Bayesian Analysis for
 Comparative Social Research

Overview

- Part I: Introduction to Bayesian data analysis

General principles of Bayesian analysis
Prior distributions
MCMC estimation
Bayesian model selection

- Part II: Bayesian structural equation modeling in MPLUS

Overview of Bayesian Features In Mplus Example I: Basic Example of Bayesian CFA
Example II: Using of Bayesian approach to detect CFA model misspecifications
Example III: Approximate (Bayesian) measurement invariance

Part I: Introduction to Bayesian data analysis
Bayesian Analysis for
Comparative Social Research

Historical Background

- Bayesian statistics is named afterThomas Revenge Bayes, an English statistician, philosopher and Presbyterian minister of the XVIII century
- Some contemporary authors, however, argue that Pierre-Simon Laplace's contribution in what is now called Bayesian statistics is much larger and therefore justify the use of term "Laplacian" instead "Bayesian"

Why Bayes?

- Bayesian analysis (BA) allows for incorporating of existing information about the model parameters of interest
- BA directly includes uncertainty about parameters in the model, yielding more realistic predictions
- BA provides more narrow (and credible) probability intervals
- BA parameter estimates are unbiased with respect to sample size: particularly, It provides reliable parameters estimates even with small sample size (both on individual and contextual levels)
- BA allows for comparing models with different methods
- BA allows for more complicated models (which usual frequentist and likelihood models unable to estimate)
- BA has a theoretic guarantee of convergence

Some notes on the interpretation of probability

- Physical: e.g. relative frequency of the event in a long run of trials (rolling dice of tossing coin)
- Epistemological: reflect degree of our subjective belief in the probability of event (e.g. readiness to bet on, or against the event)

Bayes'Theorem

- Let's consider probabilities of two events, A and B
- B is an evidence
- $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- $P(A)$ - the prior, is the initial degree of belief in A
- $P(B \mid A)$ - likelihood of B given A
- $P(A \mid B)$ - the posterior, is the degree of belief having accounted for B
- $P(B \mid A) / P(B)$ - the support B provides for A

Bayesian Statistical Analysis

- Let θ be a set of parameters of model Mand data is observed sample
- $\operatorname{Pr}(\theta \mid$ data,$M)=\frac{\operatorname{Pr}(\theta \mid M) \times \operatorname{Pr}(\text { data } \mid \theta, M)}{\operatorname{Pr}(\text { data } \mid M)}$
- $\operatorname{Pr}(\theta \mid M)$ - prior
- $\operatorname{Pr}($ data $\mid \theta, M)$ - likelihood of the data given parameters $(p(y \mid \theta)=$ $\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right)$, where y_{i} is an individual data point)
- $\operatorname{Pr}($ data $\mid M)$-marginal likelihood (evidence)
- $\operatorname{Pr}(\theta \mid$ data, $M)$ - posterior
- Posterior is proportional to prior times likelihood
- $\operatorname{Pr}(\theta \mid$ data,$M) \propto \operatorname{Pr}(\theta \mid M) \times \operatorname{Pr}($ data $\mid \theta, M)$

Frequentist vs. Bayesian

- Frequentist view: parameters are fixed. ML or LS estimates have an asymptotically-normal distribution
- Bayesian view: parameters are variables that have a prior distribution. Estimates have a possibly non-normal posterior distribution. Does not depend on large-sample theory

Priors. What is it?

- $\operatorname{Pr}(\theta \mid M)$ - a prior distribution, which reflects the information about the model parameters before observing data.
- For a given parameter, θ_{t}, a prior probability is a description of what is known a priori about the parameter to be estimated
- For specifying a prior, you should choose a type of distribution (e.g., normal, beta, uniform) and give the values of its parameters (for instance, mean and variance for normal distribution).

Classes of prior distributions:

- Informative vs. Non-Informative
- Proper vs. Improper
- Conjugate priors
- Hyperpriors

Proper vs. Improper Priors

- Let θ is a set of model parameters
- A prior $p(\theta)$ is said to be improper if $\int p(\theta) d \theta=\infty$
- For example, Beta ($\alpha=0, \beta=0$), or uniform distribution on an infinite interval (entire real line)
- Improper priors can cause improper posteriors and therefore lead to invalid estimates.
- Nonetheless, improper priors may still be useful sometimes since they usually yield non-informative priors (e.g., uniform distribution)

Informative vs. Non-Informative Priors

- An informative prior is not dominated by the likelihood and has an impact on posterior distribution
- A prior is non-informative if it has minimal impact on the posterior distribution of a respective parameter (if the prior is 'flat' relative to the likelihood function).
- Weakly informative priors (WIP) are used to avoid computational problems
- For instance, a normal distribution with very large variance is the WIP for centered and scaled continuous predictors
- Another example of WIP (so called vague prior) is a conjugate prior with large scale parameter
- Least informative parameters (LIP) are used to 'let data the data speak from themselves'.
- A popular subclass of LIP is flat priors (unbounded uniform distribution). FP allow the posterior distribution to be affected solely by the data, with no impact from prior information
- Jeffreys' prior is a least informative prior that is invariant to transformations (reparameterization of the parameter vector)

Conjugate Priors

- A prior said to be a conjugate prior for a family of distributions if the prior and posterior distributions are from the same family (that is, the form of the posterior had the same distributional form as the prior distribution).
- E.g. normal prior distribution / normal posterior distribution, gamma/gamma, gamma/Poisson, beta/beta.
- Using of conjugate priors allows for avoiding computational complexities: instead solving complex integrals you can just slightly change respective parameters to compute posterior.

Warnings!

- Subjectivity of the choice for prior distributions
- You should perform sensitivity analysis (run several models with different priors) to check how various prior distributions affect the results.
- Non-informative priors leads to parameter estimates which are almost identical to maximum likelihood estimations.

Application

- Order-constrained hypotheses
- Computational problems
- Multiple imputation
- Approximate measurement Invariance
- Model misspecifications

To specify prior distribution correctly:

- Use findings from previous studies
- Rely on theoretical considerations
- Conduct exploratory data analysis
- MCMC is for Monte-Carlo Markov Chains.
- MCMC is used to sample posterior distributions of model parameters
- Mean or mode, and variance of these posterior distributions are Bayesian equivalents of parameter estimates and standard errors in classic statistics
- The quality of the posterior distribution improves as a function of the number of steps in MCMC
- MCMC is well-suited but not the only tool for numerical approximation
- Popular MCMC algorithms: Gibbs, Metropolis-Hastings, Hamiltonian MC, etc.

MCMC Iteration Issues

- Autocorrelation: correlation between consecutive iterations for a parameter. Low correlation desired
- Mixing: the MCMC chain should visit the full range of parameter values, i.e. sample from all areas of the posterior
- Convergence: the MCMC chain should converge to stationary process (should not show an upward or downward trend).
- Burn-in phase: early iterations should be removed due to high autocorrelation.

Convergence Diagnostics

- Visual inspection of trace plot: there should be no trend in the chain

Without Trend

- Autocorrelation: less than 0.1 is considered satisfactory

Potential Scale Reduction Factor (PSR, or Gelman-Rubin diagnostics)

- When several MCMCC iterations carried out in parallel independent chains, PSR consider n iterations in m chains, where $\theta_{i j}$ is the value of parameter θ in iteration I of chain j
- $\bar{\theta}_{. j}=\frac{1}{n} \sum_{i=1}^{n} \theta_{i j}$
- $\bar{\theta}_{. .}=\frac{1}{m} \sum_{j=1}^{m} \bar{\theta}_{i j}$
- $B=\frac{1}{m-1} \sum_{j=1}^{m}\left(\bar{\theta}_{. j}-\bar{\theta}_{. .}\right)^{2}$
- $W=\frac{1}{m} \sum_{j=1}^{m} \frac{1}{n} \sum_{i=1}^{n}\left(\theta_{i j}-\bar{\theta}_{. j}\right)^{2}$
- $P S R=\sqrt{\frac{W+B}{W}}$
- PSR should be slightly higher than 1. PSR > 1.2 is usually considered to be indicating convergence failure.
- It is also possible to perform Kolmogorov-Smirnoff test of the equality of posterior distributions from different chains.

A general framework for MCMC estimation

- Set starting values (often it can be done automatically) and choose appropriate sampler
- Define number of iterations, number of burn-in iterations, and thinning interval.
- Check for autocorrelation and convergence
- Check predictive power of the model.

Model selection I Posterior Predictive Checking

- $\quad P P P$ is for posterior predictive P -value
- Consider an arbitrary discrepancy function $f(Y, X, \theta)$ (e.g., chisquare). It is computed at each MCMC iteration t, and then compared to another discrepancy function,$f(\tilde{Y}, X, \theta)(\tilde{Y}$ is a data set of the same size as Y , but generated at t with the use of current parameter estimates θ_{t}.
- $P P P=P(f(Y, X, \theta)<f(\tilde{Y}, X, \theta)) \approx \frac{1}{m} \sum_{t=1}^{m} \delta_{t}$, where $\delta_{t}=1$ when $f(Y, X, \theta)<f(\tilde{Y}, X, \theta)$ and zero otherwise.
- In the ideal universe, $P P P$ should be close to 0.5 . In the ideal universe...
- In BSEM context, $P P P<0.05$ indicates poor model fit.

An example of PPP scatterplot

An example of PPP histogram

Model selection II

Deviance Information Criterion

- $D I C=E^{\theta}[D(\theta)]+p V$, where mean (D) is the mean model-level deviance and $p V$ is the model complexity.
- $D(\theta)=-2 \log [p(\boldsymbol{y} \mid \theta)]$ - deviance for
- $p V=\operatorname{var}[D(\theta)] / 2$
- DIC is similar to BIC: BIC $=E^{\theta}[D(\theta)]+k * \log (N)$, where k is the number of model parameters and N is the sample size. But DIC is less sensitive to the sample size and the number of model parameters
- Smaller DIC (BIC) indicates better model
- DIC may be compared across different models and even different methods, as long as the dependent variable remain the same.
- *** DIC is only valid when the posterior distribution is approximately multivariate normal.

Model selection III Bayes Factor

- Bayes factor is the ratio of the marginal likelihood of the data in the models M_{1} and M_{2}
- $B F=\frac{\operatorname{Pr}\left(\text { data } \mid M_{1}\right)}{\operatorname{Pr}\left(\text { data } \mid M_{2}\right)}=\frac{\int \operatorname{Pr}\left(\theta_{1} \mid M_{1}\right) \operatorname{Pr}\left(\text { data } \mid \theta_{1}, M_{1}\right) d \theta_{1}}{\int \operatorname{Pr}\left(\theta_{2} \mid M_{2}\right) \operatorname{Pr}\left(\text { data } \mid \theta_{2}, M_{2}\right) d \theta_{2}}$
- $B F=\frac{\operatorname{Exp}\left(-0.5 B I C_{M 1}\right)}{\operatorname{Exp}\left(-0.5 B^{\prime} C_{M 2}\right)}$
- $B F=2$ means that the data favor $M 1$ over $M 2$ with 2:1 odds
- Values of $B F>3$ indicate substantial empirical support for $M 1$.
- Bayes factor can be used to compare both nested and non-nested models

Part II. Bayesian structural equation modeling in MPLUS

Bayesian Analysis for
 Comparative Social Research

Why use MPLUS for Bayesian SEM? BUGS/JAGS code for two-factor CFA model

```
model{
    for (i in 1:N){
        #latent 1
        for (t in 1:12){
        y[i,t] ~ dnorm(condmn[i,t], invsig2[t])
        condmn[i,t] <-mu[t] + fload[t]*fscore[i,1]
    }
    #latent 2
    for (t in 13:24){
        y[i,t] ~dnorm(condmn[i,t], invsig2[t])
        condmn[i,t] <-mu[t] + fload[t]*fscore[i,2]
    }
fscore[i,1:2]~dmnorm(mn.fs[], siginv.fs[,])
}
mn.fs[1]<-0
mn.fs[2]<-0
siginv.fs <- inverse(sig.fs)
sig.fs[1,1]<-1
sig.fs[2,2]<-1
sig.fs[1,2]<-phi
sig.fs[2,1]<-phi
#Prior distribution
phi ~ dunif(-1,1)
for (t in 1:24){
    fload[t] ~ dnorm(0,1.0E-3)I(0,)
    invsig2[t] <- 1/psi[t]
    psi[t] ~ dunif(0,400)
    mu[t] ~ dnorm(20,.05)
}
}
```


Why use MPLUS for Bayesian SEM? LaplacesDemon code for two-factor CFA model

```
Model <- function(parm, Data)
\{
\#\#\# Parameters
alpha <- parm[grep("alpha", Data\$parm.names)]
lambda <- parm[grep("lambda", Data\$parm.names)]
sigma <- exp(parm[grep("log.sigma", Data\$parm.names)])
F <- matrix(parm[grep("F", Data\$parm.names)], Data\$N, Data\$P)
Omega <- as.parm.matrix(Omega, Data\$P, parm, Data)
parm[grep("Omega", Data\$parm.names)] <- upper.triangle(Omega,
diag=TRUE)
\#\#\# Log(Prior Densities)
alpha.prior <- sum(dnormv(alpha, 0,1000, log=TRUE))
lambda.prior <- sum(dnormv(lambda, o, 1000, log=TRUE))
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))
Omega.prior <- dwishart(Omega, Data\$N, Data\$S, log=TRUE)
F.prior <- sum(dmvnp(F, Data\$gamma, Omega, log=TRUE))
\#\#\# Log-Likelihood
mu <- matrix(alpha, Data\$N, Data\$M, byrow=TRUE) + F[,Data\$f] *
matrix(lambda, Data \(\$ N\), Data \(\$ M\), byrow=TRUE)
LL <- sum(dnorm(Data\$Y, mu, sigma, log=TRUE))
\#\#\# Log-Posterior
\(\mathrm{LP}<-\mathrm{LL}+\) alpha. prior + lambda. prior + sigma. prior + F.prior +
Omega.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
return(Modelout)
\}
```


Why use MPLUS for Bayesian SEM? MPLUS code for two-factor CFA model

Model:
F_{1} by $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}$;
F2 by $X_{4} X_{5} X_{6}$;

Bayesian Estimation In Mplus

Modelling

- Single-level, multilevel, and mixture latent variable models
- Continuous and categorical outcomes
- Multiple Imputation

Estimation

- Default non-informative priors or user-specified informative priors
- Gibbs (default) and Hastings-Metropolis samplers
- Multiple chains using parallel processing
- Posterior parameter distributions with means, medians, modes, and credibility intervals
Diagnostics
- Convergence assessment using Gelman-Rubin potential scale reduction factors (PSR) and Kolmogorov-Smirnoff test (TECH 8)
- Posterior parameter trace plots
- Autocorrelation plots
- Posterior predictive checking plots

Model comparisons

- PPP
- DIC and BIC (for continuous dependent variables)
- Bayes Factor (for continuous dependent variables)
- Informative Hypothesis Testing

MPLUS language options related to Bayesian estimation

- POINT (mean, median, mode; default is median) - defines which parameter of the posterior sample is used as an estimate for a given model parameter
- CHAINS (default is 2) - defines the number of independent MCMC chains
- BSEED - sets seed for random number generator
- STVALUES (= ML, PERTURBED, UNPERTURBED) - sets a method for computing starting values
- ALGORITHM (GIBBS, MH; default is GIBBS) - sets an MCMC algorithm
- BCONVERGENCE (related to PSR) - sets a threshold for PSR (0.05 is default, which means that PSR > 1.05 indicates non-convergence)
- BITERATIONS (to go beyond 50K iterations)
- FBITERATIONS (fixed number of iterations)
- THIN (every k-th iteration recorded; default is 1) - set thinning interval to avoid high amount of autocorrelation in the posterior distribution

MPLUS Default Priors

- Intercepts, regression slopes, loadings: N(o, infinity), unless these parameters are in a probit regression in which case $N(0,5)$
- Variances: IG(0,-1) - Inversed Gamma distribution
- Covariance matrices: IW(o, $-\mathrm{p}-1$), unless the elements include parameters from a probit regression in which case IW $(1, \mathrm{p}+1)$ is used
- Thresholds: N(o, infinity)
- Class proportions: Dirichlet prior D(10, 10, ..., 10)

Example I: Second-order CFA for the Index of Emancipative Values

- The $6^{\text {th }}$ wave of WVS (2010-2014)
- 67 countries and 69137 individuals (NAs were listwise deleted
- 13 manifest variables, 4 first-order factors (Equity, Liberty, Autonomy, Expression)

The Index of Emancipative Values

Equity:

V45. Men have more right for job (three-category item)
V_{51}. Men are better political leaders (four-category item)
> V_{52}. Education is more important for boys (four-category item)
Autonomy (child qualities, mentioned/not mentioned):
> V_{12}. Independence
$>V_{15}$. Imagination
> V_{1}. Religious faith
> V21. Obedience

Liberty:

V203. Homosexuality can be justified (1-10 scale)
$>\quad$ V204. Abortion can be justified (1-10 scale)
$>$ V205. Divorce can be justified (1-10 scale)

Expression (V60-V63):

$>\mathrm{E}_{1} .=2$ if "giving people more say in government" is the first choice, =1 if "giving people more say in government" is the second choice, and =0 otherwise

- E2. $=2$ if "giving people more say in local affairs" is the first choice, =1 if "giving people more say in local affairs" is the second choice, and =o otherwise
$>$ E3. $=2$ if "protecting freedom of speech" is the first choice, $=1$ if "protecting freedom of speech" is the second choice, and =o otherwise

Example I. Second-Order CFA using

frequentist approach

TITLE: Second-Order CFA model for EVI;
DATA: FILE = "C:/Users/Issi/Desktop/wvs.dat";
VARIABLE:
NAMES $=\mathrm{V}_{2} \mathrm{~V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{~V}_{203}$
V204 V205V60 V61 V62 V63 E1 E2 E3;
USEVARIABLES ARE $\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{~V}_{203}$
V204 V205 E1 E2 E3;
CATEGORICALARE $\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}$;
MODEL:
Equity BY $\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52}$;
Autonomy BY V12 V15 V19 V21;
Liberty BYV203 V204 V205i
Expression BY E1 E2 E3;
EVI BY Equity Autonomy Liberty Expression;
OUTPUT:
STANDARDIZED;

Example I. Second-Order CFA using Bayesian approach

```
TITLE: Second-Order CFA model for EVI;
DATA: FILE = "C:/Users/Issi/Desktop/wvs.dat";
VARIABLE:
NAMES = V2 V45 V51 V52 V12 V15 V19 V21 V203
V204 V205 V6o V61 V62 V63 E1 E2 E3;
USEVARIABLES ARE V45 V51 V52 V12 V15 V19 V21 V203
V204 V205 E1 E2 E3;
CATEGORICAL ARE V45 \51 V52 V12 V15 V19 V21 E1 E2 E3;
```

DEFINE:
STANDARDIZE V203 V204 V205; ! It is recommended to standardize all continuous variable prior to MCMC estimation

ANALYSIS:
ESTIMATOR=BAYES; ! Choose Bayesian approach
CHAINS $=2$;
PROCESS = 2;
FBITERATIONS = 15000; ! Choose maximum number of MCMC iteration

MODEL:
Equity BY $\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52}$;
Autonomy BY V12 V15 V19 V21;
Liberty BY V203 V204 V205;
Expression BY E1 E2 E3;
EVI BY Equity Autonomy Liberty Expression;

OUTPUT:
STAND(STDYX);
TECH1 TECH8; !TECH8 produce information about PSR and Kolmogorov-Smirnoff tests for convergence
PLOT:
TYPE = PLOT2; !Produce traceplots, autocorrelation plots, plots for prior and posterior distributions, and posterior predictive scatterplots and histograms

Example I. WLSMV estimates

Example I. CFA and BSEM comparison

WLSMV ESTIMATES

Estimate	SE	t	p
EQUITY BY			
V45 0.702	0.0041	179.693	0.000
$V_{51} \quad 0.790$	0.0042	212.586	0.000
$\begin{array}{ll}\mathrm{V}_{52} & 0.564\end{array}$	0.0041	149.967	0.000
AUTONOMY BY			
$\begin{array}{ll}\text { V12 } & 0.404\end{array}$	0.007	60.126	0.000
V15 0.345	0.008	44.571	0.000
V19 -0.694	0.007	-93.924	0.000
V21 -0.439	0.007	-66.933	0.000
LIBERTY BY			
V203 0.852	0.004	225.502	0.000
V204 0.713	0.003	208.318	0.000
V205 0.720	0.004	204.017	0.000
EXPRESSI BY			
E1 0.388	0.008	47.530	0.000
E2 0.214	0.007	30.081	0.000
E3 0.280	0.008	34.207	0.000
EVI BY			
EQUITY 0.564	40.006	688.246	60.000
AUTONOMY -0.605	0.008	-78.615	50.000
LIBERTY 0.786	0.007	7119.515	0.000
EXPRESSION 0.764	40.015	$5 \quad 51.537$	0.000

BAYESIAN ESTIMATES

Estimate	S.D.	p	2.5\%	97.5\%	
EQUITY BY					
$\mathrm{V}_{45} 0.684$	0.004	0.000	0.675	0.692	*
$\begin{array}{ll}V_{51} & 0.784\end{array}$	0.004	0.000	0.777	0.792	
$\mathrm{V}_{52} \quad 0.593$	0.004	0.000	0.585	0.601	*
AUTONOMY BY					
V12 0.429	0.007	0.000	0.416	0.442	*
V15 0.308	0.007	0.000	0.294	0.322	
V19 -0.666	0.007	0.000	-0.680	-0.653	*
V21 -0.472	0.007	0.000	-0.485	-0.459	*
LIBERTY BY					
V203 0.748	0.002	0.000	0.743	0.753	*
V204 0.786	0.002	0.000	0.782	0.791	
V205 0.765	0.002	0.000	0.760	0.769	*
EXPRESSI BY					
E1 0.563	0.013	0.000		0.587	*
E2 0.283	0.008	0.000	0.267	0.299	*
E3 0.191	0.009	0.000	0.172	0.209	*
EVI BY					
EQUITY 0.566	0.006	60.000	0.553	0.578	8
AUTONOMY -0.634	0.008	0.000	-0.648	-0.618	8
LIBERTY 0.777	0.007	0.000	0.764	0.791	1
EXPRESSION 0.527	0.015	0.000	0.499	-0.556	

Example I. CFA and BSEM comparison: model fit

FREOUENTIST

RMSEA	0.048
P RMSEA <= .05	1.000
CFI	0.905
TLI	0.878

BAYESIAN

Posterior Predictive P-Value 0.000

MPLUS histogram of the posterior distribution of parameter estimate Second-Order Factor Loading for Autonomy

An example of MPLUS trace plot (for two chains)

An example of MPLUS autocorrelation plot

An example of MPLUS PPP histogram

Example II. Informative Priors for Cross-Loadings in CFA

- Both frequentist and Bayesian CFA for the construct behind the Index of Emancipative Values indicate lack of model fit.
- Misspecified cross-loadings may be a possible source of misfit (Muthen and Asparouhov 2015)

Example II MPLUS input

MODEL:

Equity BY $\mathrm{V}_{45}{ }^{*} \mathrm{~V}_{51} \mathrm{~V}_{52}$
$\mathrm{V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{~V}_{203} \mathrm{~V}_{204} \mathrm{~V}_{205} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\left(x \mathrm{xload}_{1-x l o a d 10) ; ~!s p e c i f y}\right.$ cross-loadings and set labels for them
Autonomy BY V12* $\mathrm{V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21}$
$\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{203} \mathrm{~V}_{204} \mathrm{~V}_{205} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}$ (xload11-xload19);
Liberty BY V203* V204 V205
$\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}\left(x \mathrm{lload}_{20}\right.$-xload29);
Expression BY E1* E2 E3
$\mathrm{V}_{45} \mathrm{~V}_{51} \mathrm{~V}_{52} \mathrm{~V}_{12} \mathrm{~V}_{15} \mathrm{~V}_{19} \mathrm{~V}_{21} \mathrm{~V}_{203} \mathrm{~V}_{204} \mathrm{~V}_{205}$ (xload30-xload39);
EVI BY Equity* Autonomy Liberty Expression;
MODEL PRIORS:
xload1-xload12~N(0, 0.01); ! set prior variance of 0.01 for cross-loadings

Example II MPLUS output: EQUITY

Variable	Estimate	SE	
V45	0.816	0.108	*
V51	1.242	0.159	*
V52	0.788	0.101	*
V12	0.025	0.038	
V15	-0.016	0.018	
V19	0.081	0.038	*
V21	-0.042	0.044	
V203	0.145	0.050	*
V204	-0.059	0.050	
V205	0.035	0.050	
E1	0.179	0.027	*
E2	0.010	0.106	
E3	0.189	0.026	*

Example II MPLUS output: AUTONOMY

Variable	Estimate	SE
V12	-1.249	0.615
V15	-0.475	0.241
V19	0.985	0.481
V21	1.453	0.693
V45	0.045	0.049
V_{51}	0.082	0.071
V_{52}	-0.200	0.136
V203	0.110	0.063
V204	0.066	0.066
V205	-0.123	0.116
E1	0.020	0.023
E2	0.005	0.103
E3	0.085	0.049

Example II MPLUS output: LIBERTY

Variable	Estimate	SE	
V203	0.559	0.108	
V204	0.713	0.152	*
V205	0.673	0.144	*
V12	0.001	0.065	
V15	-0.094	0.024	*
V19	0.214	0.050	*
V21	0.012	0.074	
V45	0.111	0.052	*
V_{51}	-0.009	0.099	
V_{52}	-0.023	0.058	
E1	0.081	0.015	*
E2	0.009	0.094	
E3	0.085	0.014	*

Example II MPLUS output: EXPRESSION

Variable	Estimate	SE	
E1	0.085	0.029	
E2	2.626	0.559	
E3	-0.113	0.034	
V203	0.012	0.026	
V204	-0.012	0.024	
V205	-0.010	0.023	
V12	-0.003	0.017	
V15	-0.028	0.014	*
V19	-0.003	0.022	
V21	-0.004	0.019	
V45	0.020	0.026	
V_{51}	0.015	0.033	
V52	-0.030	0.018	*

Example II. Second-order factor loadings

Variable	Estimate	SE	
EQUITY	1.000	0.000	(fixed for identification purposes)
AUTONOMY	0.365	0.285	
LIBERTY	1.792	0.600	$*$
EXPRESSION	0.845	0.493	$*$

Example II Interpretation

- PPP = 0.000
- While some cross-loadings are significant, the modified model does not fit data much better than the initial one
- Another possible source of misfit is the presence of small residual covariances (Muthen and Asparouhov 2015)

Example III. Approximate (Bayesian) Measurement Invariance

- Maximum likelihood measurement invariance CFA is suitable for cases with only a few groups and a small number of non-invariant parameters due to computational complexities
- Strict parameter invariance is often an unrealistic assumption
- MCMC is a powerful computational method that handle highdimensional models better than ML
- Approximate measurement invariance: does not fix across-group parameter differences equal to zero, but treat them as additional parameters with small prior variance

C
Prior on the difference

Posterior difference which is a compromise between the prior and

B
D

Example III

- Liberty component of the Index of emancipative values

Three variables (V203, V204, V205)
The $6^{\text {th }}$ wave of WVS (2010-2014)
67 countries and 69137 individuals (NAs were listwise deleted)
626 free parameters

- Comparing four models:

Model 1: all loadings and intercepts set to be equal across countries
Model 2: weakly informative priors for loadings and intercepts: $\mathrm{N}(\mathrm{o}, 0.01)$
Model 3: weakly informative priors for loadings and intercepts: $\mathrm{N}(\mathrm{o}, 0.03)$
Model 4: weakly informative priors for loadings and intercepts: $\mathrm{N}(0,0.05)$

Example III MPLUS input

TITLE: Bayesian multiple group model with approximate
measurement invariance;
DATA: FILE $=$ ex5.33.dat;
VARIABLE: NAMES = country $V_{1}-V_{3} ;$
USEVARIABLES = country $\mathrm{V}_{1}-\mathrm{V}_{3} ; \mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{3} are for $\mathrm{V}_{203}, \mathrm{~V}_{204}$ and V_{206} respectively
CLASSES = c(67);
KNOWNCLASS = c(country = 1-67);
ANALYSIS: TYPE = MIXTURE; !set multi-group framework
ESTIMATOR = BAYES;
CHAINS $=2$;
PROCESSORS $=2$;
FBITERATIONS = 30000;
MODEL = ALLFREE; ! changes the mixture default of across-class equality of model parameters when using BY
MODEL: \%OVERALL\%
f1 BY V1-V3* (lam\#_1-lam\#_3); !set labels for factor loadings in groups 1-67: \# is for group [V1-V3] (nu\#_1-nu\#_3); !set labels for intercepts

MODEL PRIORS:

DO(1,3) DIFF(lam1_\#-lam67_\#)~N(0,0.01); ! set prior variance for factor loadings equal to 0.01
DO $(1,3)$ DIFF(nu1_\#-nu67_\#) $\sim N(0,0.01)$; set prior variance for intercepts equal to 0.01
OUTPUT: TECH1

TECH8;

PLOT: TYPE = PLOT2;

Comparison of the models with different levels of invariance

- Model1: PPP = 0.000
- Model 2: PPP = 0.005
- Model 3: PPP = 0.272
- Model 4: PPP = 0.366
- Prior variance of 0.03 means that 95\% of the deviations of loadings and intercepts of their across-group average values lay between -0.34 and 0.34 which, on a standardized variable scale, approaches a reasonable loading size
- It clearly indicates that approximate invariance does not hold even for the single component of the EVI. What about the general index?
- Multilevel Bayesian CFA as a way to explain non-invariance (Davidov et al. 2012)

MPLUS output: 'difference' section

- Differences between country-specific loadings and the sample average loading (for the first ten countries)

LAM1 1	$L_{\text {AM }} 1$	3	LAM4 1	AM5
0.013	0.063	-0.120*	0.035	-0.136*
LAM6_1	LAM7_1	LAM8_1	LAMg_1	LAM10_1
0.132^{*}	-0.028	0.011	0.020	0.005

- Loadings in countries 3,5 and 6 are significantly different from the average. (3-Argentina, 5-Bahrain, 6 -Armenia)

MPLUS Invariance Plot

Further reading: Bayesian SEM

- Asparouhov, T. \& Muth'en, B. (2010). Bayesian analysis of latent variable models using Mplus. Technical Report. Version 4. www.statmodel.com.
- Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. Unpublished manuscript. www. statmodel. com/download/IntroBayesVersion, 203.
- Muthen, B. \& Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.

Further reading: AMI

- Muthén, B., \& Asparouhov, T. (2013). BSEM measurement invariance analysis. Mplus Web Notes, 17, 1-48.
- Van de Schoot, R., Kluytmans, A., Tummers, L., Lugtig, P., Hox, J., \& Muthén, B. (2013). Facing off with Scylla and Charybdis: a comparison of scalar, partial, and the novel possibility of approximate measurement invariance. Frontiers in Psychology, 4, 770. doi:10.3389/fpsyg.2013.00770
- Davidov, E., Dülmer, H., Schlüter, E., Schmidt, P., \& Meuleman, B. (2012). Using a multilevel structural equation modeling approach to explain cross-cultural measurement noninvariance. Journal of CrossCultural Psychology, 43(4), 558-575.

Thank you for attention!

This report was presented at the training methodological workshop "Economic and Social Changes: values effects across Eurasia".

March 31 - April 6, 2015 - Turkey.
http://Icsr.hse.ru/en/seminar m2015

Настоящий доклад был представлен на методологическом учебном семинаре «Экономические и социальные изменения: оценка эффектов по всей Евразии».

31 марта - 6 апреля 2015 года - Турция.
http://lcsr.hse.ru/seminar m2015

